14.求函數(shù)f(x)=3-2asinx-cos2x的最小值.

分析 利用平方關(guān)系化簡f(x)的解析式,設(shè)t=sinx則t∈[-1,1],代入原函數(shù)轉(zhuǎn)化為關(guān)于t的二次函數(shù),利用配方法化簡,根據(jù)定義域?qū)ΨQ軸a進(jìn)行分類討論,分別由二次函數(shù)的單調(diào)性求出函數(shù)的最小值.

解答 解:f(x)=3-2asinx-cos2x=2-2asinx+sin2x,
設(shè)t=sinx則t∈[-1,1],則y=t2-2at+2=(t-a)2+2-a2
①當(dāng)a≤-1時,函數(shù)y=t2-2at+2在[-1,1]上遞增,
∴當(dāng)t=-1時,函數(shù)y取到最小值是:1+2a+2=2a+3,
②當(dāng)-1<a<1時,當(dāng)t=a時,y的最小值是-a2+2;
③當(dāng)a≥1時,函數(shù)y=t2-2at+2在[-1,1]上遞增減,
∴當(dāng)t=1時,y的最小值是1-2a+2=-2a+3,
綜上可得,${y_{min}}=\left\{{\begin{array}{l}{2a+3(a≤-1)}\\{-{a^2}+2(-1<a<1)}\\{-2a+3(a≥1)}\end{array}}\right.$.

點(diǎn)評 本題考查正弦函數(shù)的性質(zhì),平方關(guān)系,利用換元法將函數(shù)轉(zhuǎn)化為二次函數(shù)的問題,考查分類討論思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.正四面體ABCD中,AB=CD=5,BC=AD=7,AC=BD=8,則外接球表面積為69π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=e1-xcosx,a∈R.
(Ⅰ)判斷函數(shù)f(x)在$(0,\frac{π}{2})$上的單調(diào)性;
(Ⅱ)證明:?x∈[-1,$\frac{1}{2}$],總有f(-x-1)+2f′(x)•cos(x+1)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,點(diǎn)P是圓O直徑AB延長線上的一點(diǎn),PC切圓O于點(diǎn)C,直線PQ平分∠APC,分別交AC、BC于點(diǎn)M、N.求證:
(1)△CMN為等腰三角形;
(2)PB•CM=PC•BN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.直線2x+3y-6=0分別交x軸和y軸于A,B兩點(diǎn),P是直線y=-x上的一點(diǎn),要使|PA|+|PB|最小,則點(diǎn)P的坐標(biāo)是( 。
A.(-1,1)B.(0,0)C.(1,-1)D.($\frac{1}{2}$,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在一次飛機(jī)航程中調(diào)查男女乘客的暈機(jī)情況,男女乘客暈機(jī)與不暈機(jī)的人數(shù)如圖所示. 
(1)填寫2×2列聯(lián)表
(2)判斷是否有97.5%的把握認(rèn)為暈機(jī)與性別有關(guān)?說明你的理由:
參考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(下面的臨界值表供參考)
P(K2≥k)0.400.250.150.100.050.0250.0100.0050.001
k0.7081.3232.0722.7063.8415.0246.6357.87910.828
(1)根據(jù)所給的二維條形圖得到列聯(lián)表,
暈機(jī)不暈機(jī)合計(jì)
102030
107080
合計(jì)2090100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.給出下列命題:
①函數(shù)f(x)=cosx,g(x)=|cosx|都是周期函數(shù),且最小正周期都為2π;
②函數(shù)y=sin|x|在區(qū)間(-$\frac{π}{2}$,0)上遞增;
③函數(shù)y=cos($\frac{3x}{4}$+$\frac{π}{2}$)是奇函數(shù);
④函數(shù)y=tan(2x-$\frac{π}{6}$)的定義域是{x|x∈R且x≠$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z};
⑤函數(shù)f(x)是偶函數(shù),且圖象關(guān)于直線x=2對稱,則4為f(x)的一個周期.
其中正確的命題是③④⑤(把正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如表提供了某廠節(jié)能降耗改造后在生產(chǎn)A產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾組對應(yīng)數(shù)據(jù),根據(jù)表中提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程為$\widehat{y}$=0.7x+0.35,則下列結(jié)論錯誤的是( 。
 x 3 4 6
 y 2.5 44.5 
A.線性回歸直線一定過點(diǎn)(4.5,3.5)
B.產(chǎn)品的生產(chǎn)能耗與產(chǎn)量呈正相關(guān)
C.t的取值必定是3.15
D.A產(chǎn)品每多生產(chǎn)1噸,則相應(yīng)的生產(chǎn)能耗約增加0.7噸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知等比數(shù)列{an}的公比為3,且a1+a3+a5=9,則$log_{\frac{1}{3}}}$(a5+a7+a9)=( 。
A.$\frac{1}{6}$B.$-\frac{1}{6}$C.6D.-6

查看答案和解析>>

同步練習(xí)冊答案