分析 利用同角三角函數(shù)的基本關(guān)系求得cos(α-2β) 和sin(2α-β)的值,再利用兩角和差的余弦公式求得 cos(α+β)=cos[(2α-β)-(α-2β)]的值.
解答 解:∵sin(α-2β)=-$\frac{2}{3}$<0,其中0<α<$\frac{π}{4}$,$\frac{π}{2}$<β<$\frac{3π}{4}$,∴α-2β∈(-$\frac{3π}{2}$,-$\frac{3π}{4}$),
∴α-2β∈(-π,-$\frac{3π}{4}$),∴cos(α-2β)=-$\sqrt{{1-sin}^{2}(α-2β)}$=-$\frac{\sqrt{5}}{3}$.
∵cos(2α-β)=$\frac{1}{4}$>0,其中0<α<$\frac{π}{4}$,$\frac{π}{2}$<β<$\frac{3π}{4}$,∴2α-β∈(-$\frac{3π}{4}$,0),∴2α-β∈(-$\frac{π}{2}$,0),
∴sin(2α-β)=-$\sqrt{{1-cos}^{2}(2α-β)}$=-$\frac{\sqrt{15}}{4}$,
∴cos(α+β)=cos[(2α-β)-(α-2β)]=cos(2α-β)cos(α-2β)+sin(2α-β)sin(α-2β)=$\frac{1}{4}•(-\frac{\sqrt{5}}{3})$+(-$\frac{\sqrt{15}}{4}$)•(-$\frac{2}{3}$)=$\frac{2\sqrt{15}-\sqrt{5}}{12}$,
故答案為:$\frac{2\sqrt{15}-\sqrt{5}}{12}$.
點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角和差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ”loga(x•y)=logax+logay“類比推出“sin(x•y)=sinx+siny“ | |
B. | “(a+b)•c=ac+bc”類比推出“(a•b)•c=ac•bc” | |
C. | “(a+b)•c=ac+bc”類比推出“$\frac{a+b}{c}$=$\frac{a}{c}+\frac{c}$(c≠0)“ | |
D. | “(a•b)•c=a•(b•c)“類比推出“($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)“ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 121 | B. | 120 | C. | 84 | D. | 45 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ±2 | B. | ±4 | C. | -4或0 | D. | 0或4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 90° | B. | 60° | C. | 45° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{17}{8}$,-2) | B. | (-$\frac{17}{8}$,-2] | C. | [1,$\frac{17}{16}$) | D. | (1,$\frac{17}{16}$) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com