14.函數(shù)y=$\frac{1}{\sqrt{{x}^{2}+2x}}$的定義域?yàn)椋ā 。?table class="qanwser">A.{x|-2≤x≤0}B.{x|-2<x<0}C.{x|x≤-2或x≥0}D.{x|x<-2或x>0}

分析 由分母中根式內(nèi)部的代數(shù)式大于0求得x的取值范圍得答案.

解答 解:由x2+2x>0,得x<-2或x>0.
∴函數(shù)y=$\frac{1}{\sqrt{{x}^{2}+2x}}$的定義域?yàn)閧x|x<-2或x>0}.
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,考查了一元二次不等式的解法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)函數(shù)$f(x)=\frac{(x+1)(x+a)}{x}$為奇函數(shù),則實(shí)數(shù)a的值為(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若f(x0)=0,f′(x0)=4,則$\underset{lim}{△x→0}$ $\frac{f({x}_{0}+2△X)-f({x}_{0})}{2△X}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.將一顆質(zhì)地均勻的骰子(一種各面上分別標(biāo)有1、2、3、4、5、6的正方體玩具),先后拋擲3次,至少出現(xiàn)一次4點(diǎn)向上的概率是( 。
A.$\frac{5}{216}$B.$\frac{31}{216}$C.$\frac{91}{216}$D.$\frac{25}{216}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖為函數(shù)y=f(x)=Asin(wx+φ)(A>3,w>0,|φ|<π)圖象的一部分.
(1)求函數(shù)f(x)的解析式;
(2)若將函數(shù)y=f(x)圖象向左平移$\frac{π}{6}$的單位后,得到函數(shù)y=g(x)的圖象,若g(x)≥$\frac{\sqrt{3}}{2}$,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知復(fù)數(shù)${z_1}=({\sqrt{3}sinx-cosx})+({sinx+\sqrt{3}cosx})i,{z_2}=({1-\sqrt{3}sinx})+({sinx-\sqrt{3}cosx})i$;(x∈R,i為虛數(shù)單位)
(Ⅰ)當(dāng)z1是純虛數(shù)時(shí),求x的取值;
(Ⅱ)設(shè)$f(x)=|{z_1}+{z_2}{|^2}$,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求點(diǎn)A(3,-2)關(guān)于直線l:2x-y-1=0的對(duì)稱點(diǎn)A′的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=|log2(x+2)|-1.

(1)作出f(x)的圖象;
(2)討論方程f(x)-2a=0(a∈R)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知等差數(shù)列{an},{bn}的公差分別是p,q(pq≠0),則數(shù)列{an+bn}( 。
A.是公差為p的等差數(shù)列B.是公差為q的等差數(shù)列
C.是公差為p+q的等差數(shù)列D.不是等差數(shù)列

查看答案和解析>>

同步練習(xí)冊(cè)答案