5.若f(x0)=0,f′(x0)=4,則$\underset{lim}{△x→0}$ $\frac{f({x}_{0}+2△X)-f({x}_{0})}{2△X}$=4.

分析 利用求f(x0)的導(dǎo)數(shù)的定義,化簡(jiǎn)求得.

解答 解:$\underset{lim}{△x→0}$$\frac{f({x}_{0}+2△X)-f({x}_{0})}{2△X}$=f′(x0)=4,
故答案為:4.

點(diǎn)評(píng) 本題考查函數(shù)在某一點(diǎn)處導(dǎo)數(shù)的定義,合理進(jìn)行恒等變形是解決本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合P={x|x2=4},集合Q={x|ax=4},若Q⊆P,則a的值為(  )
A.2B.-2C.2或-2D.0,2,或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.某種細(xì)菌平均每過(guò)4小時(shí)發(fā)生一次裂變(有一個(gè)分裂成兩個(gè)),經(jīng)過(guò)2天后,這種細(xì)菌每一個(gè)可裂變?yōu)?12個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左.右焦點(diǎn)分別為F1、F2過(guò)點(diǎn)F1并且垂直于x軸的直線為l.若過(guò)原點(diǎn)O和F2并和直線l相切的圓的半徑等于點(diǎn)F2到雙曲線C的兩條漸近線的距離之和.則雙曲線C的離心率為( 。
A.$\frac{\sqrt{7}}{2}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.$\frac{4\sqrt{7}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)h(x)=x+$\frac{m}{x}$,x∈[$\frac{1}{4}$,5],其中m是不等于零的常數(shù),
(1)m=1時(shí),直接寫(xiě)出h(x)的值域;
(2)求h(x)的單調(diào)遞增區(qū)間;
(3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=nin{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.例如:f1(x)=cosx,x∈[0,π],則,f2(x)=1,x∈[0,π],
(理)當(dāng)m=1時(shí),設(shè)M(x)=$\frac{h(x)+h(4x)}{2}$+$\frac{|h(x)-h(4x)|}{2}$,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范圍;
(文)當(dāng)m=1時(shí),|h1(x)-h2(x)|≤n恒成立,求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=x2+2x(x>0),f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N*,則f5(x)在[1,2]上的最大值是( 。
A.210-1B.232-1C.310-1D.332-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知A1,A2分別為雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1的左、右頂點(diǎn),P為雙曲線上第一限內(nèi)的點(diǎn),直線l:x=1與x軸交于點(diǎn)C,若直線PA1,PA2分別交直線l于B1,B2兩點(diǎn),且△A1B1C與A2B2C的面積相等,則直線PA1的斜率為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)y=$\frac{1}{\sqrt{{x}^{2}+2x}}$的定義域?yàn)椋ā 。?table class="qanwser">A.{x|-2≤x≤0}B.{x|-2<x<0}C.{x|x≤-2或x≥0}D.{x|x<-2或x>0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知非零向量$\overrightarrow{a\;},\;\overrightarrow b$滿(mǎn)足|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|=3|$\overrightarrow$|,則cos<$\overrightarrow{a}$,$\overrightarrow$-$\overrightarrow{a}$>=-$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案