20.已知i為虛數(shù)單位,復(fù)數(shù)z滿足$\frac{1+z}{1-z}$=i,則z2016=(  )
A.-2iB.2iC.-1D.1

分析 把已知等式變形得到$z=\frac{-1+i}{1+i}$,然后利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由虛數(shù)單位i的運算性質(zhì)求得答案.

解答 解:由$\frac{1+z}{1-z}$=i,得(1-z)i=1+z,即i-iz=1+z,
∴(1+i)z=-1+i,則$z=\frac{-1+i}{1+i}=\frac{(-1+i)(1-i)}{(1+i)(1-i)}=\frac{2i}{i}=i$,
∴z2016=i2016=(i21008=(-1)1008=1.
故選:D.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了虛數(shù)單位i得性質(zhì),是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在等差數(shù)列{an}中,已知an=11-2n,則使前n項和Sn最大的n值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在平面幾何中,三角形的面積等于其周長的一半與其內(nèi)切圓半徑之積,類比之,在立體幾何中,三棱錐的體積等于其表面積的$\frac{1}{3}$與其內(nèi)切球半徑之積(用文字表述)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如果數(shù)據(jù)x1,x2,…,xn的平均數(shù)為2,方差為3,則數(shù)據(jù)3x1+5,3x2+5…,3xn+5的平均數(shù)和方差分別為( 。
A.11,25B.11,27C.8,27D.11,8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,扇形OAB的中心角為直角,半徑為1,點P為扇形OAB的弧$\widehat{AB}$上任意一點,設(shè)$\overrightarrow{OP}$=x$\overrightarrow{OB}$+y$\overrightarrow{OA}$(x,y∈R),$\overrightarrow a$=(x,y),$\overrightarrow b$=(${\sqrt{3}$,1),則$\overrightarrow a•\overrightarrow b$的最小值為( 。
A.-1B.-2C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知集合A={1,2},B={0,1},則集合A∪B的所有子集的個數(shù)為8個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知四棱柱ABCD-A1B1C1D1,側(cè)面A1ADD1⊥面ABCD,底面ABCD是矩形,且AB=2,AD=1,AA1=$\sqrt{5}$,∠A1AD的余弦值為$\frac{\sqrt{5}}{5}$.
(1)求證:平面A1DCB1⊥平面ABCD;
(2)求BD1與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在數(shù)列{an}中,a1=1,a2=5,an+2=an+1-an(n∈N*),則a1000=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.2016年里約奧運會和殘奧會吉祥物的名字于2015年12月14日揭曉,兩個吉祥物分別叫維尼修斯(Vinicius)和湯姆(Tom)(如圖),以此紀(jì)念巴薩諾瓦曲風(fēng)的著名音樂家Viniciusde Moraes和Tom Jobim.某商場在抽獎箱中放置了除圖案外,其它無差別的8張卡片,其中2張印有“維尼修斯(Vinicius)”圖案,n(2≤n≤4)張印有“湯姆(Tom)”圖案,其余卡片上印有“2016年里約奧運會”的圖案,
(1)若n=4,從抽獎箱中任意取一卡片,記下圖案后放回,連續(xù)抽取三次,求三次取出的卡片中,恰有兩張印有“2016年里約奧運會”圖片卡片的概率;
(2)從抽獎箱中任意抽取兩張卡片,兩張卡片圖案相同的概率是$\frac{2}{7}$.求n的值;
(3)①當(dāng)n=3時,隨機(jī)抽取一次,若規(guī)定取出印有“維尼修斯(Vinicius)”圖案的卡片獲得16元購物券,取出印有“湯姆(Tom)”圖案的卡片獲得8元購物券,取出印有“2016年里約奧運會”的圖案的卡片沒有獎勵,用ξ表示獲得獎券的面值,求ξ的分布列和數(shù)學(xué)期望E(ξ).
②在①的條件下,若商場每天有800人參與抽獎活動,顧客獲得的購物券全部用于捆綁其他商品消費,每1元購物券能給商場帶來10元純利潤,則商場每天在這個活動中能獲得的純利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案