分析 (1)取AB的中點E,連結DE,推導出BE⊥DE,AB⊥SE,由此能證明AB⊥SD.
(2)分別以DE,DC<DF所在直線為x軸,y軸,z軸,建立空間直角坐標系,利用向量法能求出二面角A-SB-C的正弦值.
解答 證明:(1)取AB的中點E,連結DE,則四邊形BCDE為矩形,∴BE⊥DE,
∵△SAB為等邊三角形,∴AB⊥SE,
∵SE∩DE=E,
∴AB⊥平面SED,SD?平面SED,
∴AB⊥SD.
解:(2)由(1)知DE⊥DC,過D作DF⊥平面ABCD,則DE,DC,DF兩兩垂直,
分別以DE,DC<DF所在直線為x軸,y軸,z軸,建立空間直角坐標系,
則D(0,0,0),A(2,-1,0),B(2,1,0),C(0,1,0),
∵SD=1,DE=2,SE=$\sqrt{3}$,
∴SD⊥SE,∴SD⊥平面SAB,
∴S($\frac{1}{2},0,\frac{\sqrt{3}}{2}$),$\overrightarrow{DS}$=($\frac{1}{2},0,\frac{\sqrt{3}}{2}$),
設平面SBC的法向量$\overrightarrow{n}$=(x,y,z),
∵$\overrightarrow{SC}$=(-$\frac{1}{2}$,1,-$\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=(-2,0,0),
∴$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{SC}=-2x=0}\\{\overrightarrow{n}•\overrightarrow{BC}=-\frac{1}{2}x+y-\frac{\sqrt{3}}{2}z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(0,$\frac{\sqrt{3}}{2}$,1),
設二面角A-SB-C的平面角為θ,
則cosθ=$\frac{|\overrightarrow{DS}•\overrightarrow{n}|}{|\overrightarrow{DS}|•|\overrightarrow{n}|}$=$\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{7}}{2}}$=$\frac{\sqrt{21}}{7}$,
∴sinθ=$\sqrt{1-(\frac{\sqrt{21}}{7})^{2}}$=$\frac{2\sqrt{7}}{7}$.
∴二面角A-SB-C的正弦值為$\frac{2\sqrt{7}}{7}$.
點評 本題考查異面直線垂直的證明,考查二面角的正弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{10}{3}$ | B. | 4 | C. | $\frac{20}{3}$ | D. | $\frac{16}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [0,+∞) | B. | (-∞,0] | C. | (-∞,1] | D. | [1,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [$\frac{9}{4}$,+∞) | B. | [2,+∞) | C. | (-∞,$\frac{9}{4}$] | D. | (-∞,2] |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3,$\frac{4}{3}$ | B. | 3,$\frac{3}{2}$ | C. | 4,$\frac{4}{3}$ | D. | 4,$\frac{3}{2}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com