A. | [0,+∞) | B. | (-∞,0] | C. | (-∞,1] | D. | [1,+∞) |
分析 求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為則$\frac{2}{x}$-a≥0在區(qū)間[2,+∞)恒成立,求出a的范圍即可.
解答 解:∵f(x)=2lnx-ax,(x>0),
∴f′(x)=$\frac{2}{x}$-a,
若函數(shù)f(x)=2lnx-ax在區(qū)間[2,+∞)上單調(diào)遞增,
則$\frac{2}{x}$-a≥0在區(qū)間[2,+∞)恒成立,
即a≤1,
故選:C.
點(diǎn)評 本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的單調(diào)性的性質(zhì),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{80\sqrt{5}π}}{3}$-16π | B. | $\frac{{160\sqrt{5}π}}{3}$-16π | C. | $\frac{{80\sqrt{5}π}}{3}$-8π | D. | $\frac{32π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4π}{3}$ | B. | $\frac{8π}{3}$ | C. | $\frac{{5\sqrt{5}π}}{6}$ | D. | $\sqrt{5}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com