19.已知a、b、c分別為△ABC三個(gè)內(nèi)角A、B、C的對(duì)邊,若cosB=$\frac{4}{5}$,a=5,△ABC的面積為12,則$\frac{a+c}{sinA+sinC}$的值等于$\frac{25}{3}$.

分析 求出sinB,代入面積公式S=$\frac{1}{2}acsinB$求出c,利用余弦定理計(jì)算b,則$\frac{a+c}{sinA+sinC}$=$\frac{sinB}$.

解答 解:∵△ABC中cosB=$\frac{4}{5}$,a=5,sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{3}{5}$,
S△ABC=$\frac{1}{2}$acsinB=12,∴c=8.
∴由余弦定理得b=$\sqrt{{a}^{2}+{c}^{2}-2accosB}$=5,
∴$\frac{a+c}{sinA+sinC}$=$\frac{sinB}$=$\frac{25}{3}$.
故答案為:$\frac{25}{3}$.

點(diǎn)評(píng) 本題考查了余弦定理,三角形的面積公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若函數(shù)y=$\frac{{2{{sin}^2}x+sin\frac{3x}{2}-4}}{{{{sin}^2}x+2{{cos}^2}x}}$既存在最大值M,又存在最小值m,則M+m的值為( 。
A.-1B.-2C.-3D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)點(diǎn)O為四面體ABCD外接球的球心,若|$\overrightarrow{AB}$|=3,|$\overrightarrow{AD}$|=4,則$\overrightarrow{AO}$•$\overrightarrow{BD}$=$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知i2=-1,復(fù)數(shù)z=i(1-i),則|z|=(  )
A.1B.$\sqrt{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知角α的終邊過(guò)點(diǎn)P(-4,-6sin150°),則sin2α的值為( 。
A.-$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{12}{25}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)fM(x)的定義域?yàn)镽,且定義如下:fM(x)=$\left\{\begin{array}{l}{x,x∈M}\\{\frac{1}{x},x∉M}\end{array}\right.$(M是實(shí)數(shù)集R的非空真子集),若A={x||x-1|≤2},B={x|-1≤x<1},則F(x)=$\frac{2{f}_{A∪B}(x)+1}{{f}_{A}(x)+{f}_{B}(x)+1}$的最大值為$\frac{21}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)y=ax2+bx+c,其中a,b,c∈{0,1,2,3,4},則不同的二次函數(shù)的個(gè)數(shù)共有(  )
A.125B.15C.100D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.用1,2,3三個(gè)數(shù)字組成一個(gè)五位數(shù),要求相鄰的位置的數(shù)字不能相同,則不同的五位數(shù)共有42種(以數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.對(duì)每個(gè)x,y是y1=2x,y2=x+2,y3=-$\frac{3}{2}$x+12三個(gè)值中的最小值,則當(dāng)x變化時(shí),函數(shù)y的最大值是6.

查看答案和解析>>

同步練習(xí)冊(cè)答案