1.為了解大學生觀看某電視節(jié)目是否與性別有關(guān),一所大學心理學教師從該校學生中隨機抽取了50人進行問卷調(diào)查,得到了如下的列聯(lián)表,若該教師采用分層抽樣的方法從50份問卷調(diào)查中繼續(xù)抽查了10份進行重點分析,知道其中喜歡看該節(jié)目的有6人.
喜歡看該節(jié)目不喜歡看該節(jié)目合計
女生5
男生10
合計50
(Ⅰ)請將上面的列聯(lián)表補充完整;
(Ⅱ)是否有99.5%的把握認為喜歡看該節(jié)目節(jié)目與性別有關(guān)?說明你的理由;
(Ⅲ)已知喜歡看該節(jié)目的10位男生中,5位喜歡看新聞,3位喜歡看動畫片,2位喜歡看韓劇,現(xiàn)從喜歡看新聞、動畫片和韓劇的男生中各選出1名進行其他方面的調(diào)查,求喜歡看動畫片的男生甲和喜歡看韓劇的男生乙不全被選中的概率.
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d;
①當K2≥3.841時有95%的把握認為ξ、η有關(guān)聯(lián);
②當K2≥6.635時有99%的把握認為ξ、η有關(guān)聯(lián).

分析 (Ⅰ)利用分層抽樣知識求出喜歡看該節(jié)目的人數(shù),然后求出不喜歡看該節(jié)目的人數(shù),將上面的列聯(lián)表補充完整即可;
(Ⅱ)有99.5%的把握認為喜歡看該節(jié)目節(jié)目與性別有關(guān),理由:利用已知公式求出k2,比較即可得到結(jié)果;
(Ⅲ)記“甲乙不全被選中”為事件A,利用間接法求出P(A)的值即可.

解答 解:(Ⅰ)由分層抽樣知識知:喜歡看該節(jié)目的同學有50×$\frac{6}{10}$=30(人),
故不喜歡看該節(jié)目的同學有50-30=20(人),將列聯(lián)表補充如圖所示:

喜歡看該節(jié)目不喜歡看該節(jié)目合計
女生20525
男生101525
合計302050
(Ⅱ)有99.5%的把握認為喜歡看該節(jié)目節(jié)目與性別有關(guān),理由為:
∵k2=$\frac{50×(20×15-10×5)}{30×20×25×25}$=$\frac{25}{3}$≈8.333>7.897,
∴有99.5%的把握認為喜歡看該節(jié)目節(jié)目與性別有關(guān);
(Ⅲ)記“甲乙不全被選中”為事件A,間接法:P(A)=1-$\frac{{C}_{5}^{1}}{{C}_{5}^{1}{C}_{3}^{1}{C}_{2}^{1}}$=$\frac{5}{6}$.

點評 本題考查了獨立性檢驗的應(yīng)用,能熟練識別題中的數(shù)據(jù)是解本題的關(guān)鍵.考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知a>0,b∈R,函數(shù)f(x)=4ax2-2bx-a+b的定義域為[0,1]
(Ⅰ)當a=1時,函數(shù)f(x)在定義域內(nèi)有兩個不同的零點,求b的取值范圍;
(Ⅱ) 記f(x)的最大值為M,證明:f(x)+M>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=ax2+xlnx.
(Ⅰ)若a=1,求函數(shù)f(x)的在(e,f(e)處的切線方程;
(Ⅱ)若a=-e,證明:方程2|f(x)|-3x=2lnx無解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.曲線f(x)=lnx在點(1,0)處的切線與坐標軸所圍成的三角形的面積為( 。
A.1B.$\frac{1}{2}$C.2D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知圓C的方程:x2+y2-4x-6y+m=0,若圓C與直線a:x+2y-3=0相交于M、N兩點,且|MN|=2$\sqrt{3}$.
(1)求m的值;
(2)是否存在直線l:x-y+c=0,使得圓上有四點到直線l的距離為$\frac{\sqrt{2}}{2}$,若存在,求出c的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.某幾何體的三視圖如圖所示,則該幾何體的體積為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.對于命題p和命題q,“p且q為真命題”的充要條件是(  )
A.p或q為真命題B.¬p且¬q為真命題C.p或q為假命題D.¬p或¬q為假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.從6名女生中選4人參加4×100米接力賽,要求甲、乙兩人至少有一人參賽,如果甲、乙兩人同時參賽,他們的接力順序就不能相鄰,不同的排法種數(shù)為( 。
A.144B.192C.228D.264

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.由0,1,2,3可以組成沒有重復(fù)數(shù)字的三位數(shù)共有( 。﹤.
A.18B.24C.64D.81

查看答案和解析>>

同步練習冊答案