6.如圖的程序框圖,若任意輸入?yún)^(qū)間[1,18]中的整數(shù)x,則輸出的x大于39的概率是$\frac{7}{9}$.

分析 根據(jù)框圖的流程,依次計算運行的結(jié)果,直到不滿足條件n≤3,求出輸出x的值,再根據(jù)輸出的x大于39,求出輸入x的范圍,根據(jù)幾何概型的概率公式計算.

解答 解:由程序框圖知:第一次運行x=2x-1,n=2;
第二次運行x=2×(2x-1)-1.n=2+1=3;
第三次運行x=2×[2×(2x-1)-1]-1,n=3+1=4,
不滿足條件n≤3,程序運行終止,輸出x=8x-(4+2+1)=8x-7,
由輸出的x大于39,得x>5.75,
∴輸入x∈[6,19],數(shù)集的長度為14,
又數(shù)集[1,19]的長度為18,
∴輸出的x大于39的概率為$\frac{14}{18}$=$\frac{7}{9}$.
故答案為:$\frac{7}{9}$.

點評 本題考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程判斷算法的功能是解答此類問題的關(guān)鍵,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知二次函數(shù)y=ax2+1的圖象為拋物線C,過頂點A(0,1)的直線l與拋物線C相交于另外一點P,點Q為拋物線C上另外一點,且點M(0,m)到直線l的距離為1.
(Ⅰ)若直線l的斜率為k,且|k|∈[$\frac{{\sqrt{3}}}{3}$,$\sqrt{3}}$],求實數(shù)m的取值范圍;
(Ⅱ)當m=$\sqrt{2}$+1時,△APQ的內(nèi)心恰好是點M,求此二次函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.如圖,在△ABC中,∠BAC的平分線交BC于點D,交△ABC的外接圓于點E,延長AC交△DCE的外接圓于點F,DF=$\sqrt{14}$.
(Ⅰ)求BD;
(Ⅱ)若∠AEF=90°,AD=3,求DE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.sin77°cos47°-sin13°cos43°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.數(shù)列{an}的前n項和為Sn,滿足:Sn=f(n)=n2+2a|n-2|.
(1)若數(shù)列{an}為遞增數(shù)列,求實數(shù)a的取值范圍;
(2)當a=$\frac{1}{2}$時,設數(shù)列{bn}滿足:bn=2an,記{bn}的前n項和為Tn,求Tn,并求滿足不等式Tn>2015的最小整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.化簡$\frac{sin22°+cos45°sin23°}{cos22°-sin45°sin23°}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.曲線y=xe2x-1在點(1,e)處的切線方程為3ex-y-2e=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.“x≠2或y≠3”是“x+y≠5”的(  )
A.充分必要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合A={x∈R|log${\;}_{\frac{1}{2}}}$(x-2)≥-1},B={x∈R|$\frac{2x+6}{3-x}$≥1},則A∩B=( 。
A.[-1,3)B.[-1,3]C.D.(2,3)

查看答案和解析>>

同步練習冊答案