14.兩條平行線l1:3x+4y-2=0,l2:9x+12y-10=0間的距離等于$\frac{4}{15}$.

分析 將直線l1方程化成與l2的方程x、y的系數(shù)對應(yīng)相等,再利用兩條平行線間的距離公式加以計(jì)算,即可得到它們之間的距離.

解答 解:∵直線l1:3x+4y-2=0,化成9x+12y-6=0,
∴兩條平行線間的距離為d=$\frac{|-10+6|}{\sqrt{{9}^{2}+1{2}^{2}}}$=$\frac{4}{15}$.
故答案是:$\frac{4}{15}$.

點(diǎn)評 本題給出兩條平行線,求它們的距離.著重考查了直線的方程、平行線之間的距離公式等知識(shí),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.有5個(gè)不同的社團(tuán),甲、乙兩名同學(xué)各自參加其中1個(gè)社團(tuán),每位同學(xué)參加各個(gè)社團(tuán)的可能性相同,則這兩位同學(xué)參加的社團(tuán)不同的概率為( 。
A.$\frac{1}{5}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在如圖所示的幾何體中,四邊形ABCD是邊長為2的正方形,ADNM是矩形,平面ADNM⊥平面ABCD,AM=1,E是AB的中點(diǎn),
(Ⅰ)求證:EM∥平面NDC
(Ⅱ)在線段AM上是否存在點(diǎn)P,使P到AN的距離是P到面MEC的距離的$\sqrt{5}$倍,若存在,求出此時(shí)二面角P-EC-D的正切值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.不等式3tanx+$\sqrt{3}$>0的解集是( 。
A.$(-\frac{π}{6}+kπ,\frac{π}{6}+kπ)k∈Z$B.$(-\frac{π}{6}+kπ,\frac{π}{3}+kπ)k∈Z$C.$(-\frac{π}{2}+kπ,\frac{π}{6}+kπ)k∈Z$D.$(-\frac{π}{6}+kπ,\frac{π}{2}+kπ)k∈Z$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.曲線y=$\frac{lnx}{x}$+1在點(diǎn)(1,0)處的切線方程是(  )
A.x-y+1=0B.2x-y+1=0C.x-y-1=0D.x-2y+2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,向量$\overrightarrow{m}$=(2sin B,-$\sqrt{3}$),$\overrightarrow{n}$=(cos2B,2cos2$\frac{B}{2}$-1),且$\overrightarrow{m}$∥$\overrightarrow{n}$∥n,則銳角B的值為(  )
A.$\frac{2π}{3}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若等比數(shù)列{an}滿足anan+1=64n,則{an}的公比為( 。
A.±8B.8C.±16D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.以下四個(gè)命題中,正確的是( 。
A.命題“若f(x)是周期函數(shù),則f(x)是三角函數(shù)”的否命題是“若f(x)是周期函數(shù),則f(x)不是三角函數(shù)”
B.命題“?x0∈R,使得不等式x2+1<0成立”的否定是“?x∉R,使得不等式x2+1≥0成立”
C.在△ABC中,“sinA>sinB”是“A>B”的充要條件
D.以上皆不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x}^{2}+1,x<1\\|lo{g}_{\frac{1}{2}}x|,x≥1\end{array}\right.$.
(1)在直角坐標(biāo)系中畫出該函數(shù)圖象的草圖;
(2)根據(jù)函數(shù)圖象的草圖,求函數(shù)y=f(x)值域,單調(diào)區(qū)間及零點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案