分析 (I)由點(diǎn)(an,an+1)在直線y=x+3上,可得:an+1=an+3,即an+1-an=3,利用等差數(shù)列的定義及其通項(xiàng)公式即可得出.
(II)bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$=$\frac{1}{9n(n+1)}$=$\frac{1}{9}(\frac{1}{n}-\frac{1}{n+1})$,再利用“裂項(xiàng)求和”即可得出.
解答 (I)證明:∵點(diǎn)(an,an+1)在直線y=x+3上,∴an+1=an+3,
∴an+1-an=3,
∴數(shù)列{an}是等差數(shù)列,公差為3,首項(xiàng)為3.
∴an=3+3(n-1)=3n.
(II)解:bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$=$\frac{1}{9n(n+1)}$=$\frac{1}{9}(\frac{1}{n}-\frac{1}{n+1})$,
∴數(shù)列{bn}的前n項(xiàng)和Sn=$\frac{1}{9}$$[(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=$\frac{1}{9}$$(1-\frac{1}{n+1})$
=$\frac{n}{9(n+1)}$.
點(diǎn)評 本題考查了等差數(shù)列的定義及其通項(xiàng)公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$) | B. | ($\frac{\sqrt{5}}{5}$,$\frac{2\sqrt{5}}{5}$) | C. | (-$\frac{\sqrt{5}}{5}$,-$\frac{2\sqrt{5}}{5}$) | D. | ($\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 2 | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$+1 | B. | $\sqrt{3}$+1 | C. | $\sqrt{5}$+1 | D. | 2$\sqrt{2}$+3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
ξ | 1 | 2 | 3 |
P | p1 | p2 | p3 |
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{16}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com