5.已知隨機(jī)變量ξ的分布列為
ξ123
Pp1p2p3
且E(ξ)=2,D(ξ)=$\frac{1}{2}$,則P(-1<ξ<2)=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{8}$D.$\frac{1}{16}$

分析 由已知條件利用分布列的性質(zhì)、數(shù)學(xué)期望和方差公式列出方程組,求出p1,p2,p3,由此能求出P(-1<ξ<2)的值.

解答 解:由已知得:$\left\{\begin{array}{l}{{p}_{1}+{p}_{2}+{p}_{3}=1}\\{{p}_{1}+2{p}_{2}+3{p}_{3}=2}\\{(1-2)^{2}{p}_{1}+(2-2)^{2}{p}_{2}+(3-2)^{2}{p}_{3}=\frac{1}{2}}\end{array}\right.$,
解得p1=$\frac{1}{4}$,p2=$\frac{1}{2}$,p3=$\frac{1}{4}$,
∴P(-1<ξ<2)=P(ξ=1)=p1=$\frac{1}{4}$.
故選:A.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意分布列的性質(zhì)、數(shù)學(xué)期望和方差公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.?dāng)?shù)列{an}中,a1=3,點(diǎn)(an,an+1)在直線y=x+3上.
(Ⅰ)求證數(shù)列{an}是等差數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=log2(ax+4)在(1,2]上單調(diào)遞減,則實(shí)數(shù)a的值可以是( 。
A.1B.-1C.-2D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)分別為(0,2)(1,-1),z=$\frac{{z}_{1}}{\overline{{z}_{2}}}$,則復(fù)數(shù)z的實(shí)部與虛部之和為( 。
A.$\sqrt{2}$B.1+iC.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y≤2}\\{y≤x}\end{array}\right.$z=x+ay(a>1)的最大值為3,則實(shí)數(shù)a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=log3(x+1)+a,則f(-8)等于( 。
A.-3-aB.3+aC.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,A1,A2為橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的長軸的左、右端點(diǎn),O為坐標(biāo)原點(diǎn),S,Q,T為橢圓上不同于A1,A2的三點(diǎn),直線QA1,QA2,OS圍成一個(gè)平行四邊形OPQR,則|OS|2+|OT|2=( 。
A.5B.3+$\sqrt{5}$C.9D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.某農(nóng)業(yè)生態(tài)園有果樹60000棵,其中櫻桃樹有4000棵.為調(diào)查果樹的生長情況,采用分層抽樣的方法抽取一個(gè)容量為300的樣本,則樣本中櫻桃樹的數(shù)量為20棵.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}滿足a1=1,a2=$\frac{1}{2}$,且[3+(-1)n]an+2-2an+2[(-1)n-1]=0,求a3,a4,a5,a6的值及數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案