1.(x+3)(2x-$\frac{1}{4x\sqrt{x}}$)5的展開式中常數(shù)項為15.

分析 把(2x-$\frac{1}{4x\sqrt{x}}$)5按照二項式定理展開,可得展開式中(x+3)(2x-$\frac{1}{4x\sqrt{x}}$)5的展開式中常數(shù)項.

解答 解:(x+3)(2x-$\frac{1}{4x\sqrt{x}}$)5 =(x+3)•(${C}_{5}^{0}$•32x5-${C}_{5}^{1}$•4x2$\sqrt{x}$+${C}_{5}^{2}$•$\frac{1}{2}$-${C}_{5}^{3}$•$\frac{1}{16}$$\frac{\sqrt{x}}{{x}^{2}}$+${C}_{5}^{4}$•$\frac{1}{12{8x}^{5}}$-${C}_{5}^{5}$•$\frac{1}{1024{•x}^{\frac{15}{2}}}$),
故它的 展開式中常數(shù)項為3•${C}_{5}^{2}$•$\frac{1}{2}$=15,
故答案為:15.

點評 本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)f(x)=2lnx-x2+4x-5的零點個數(shù)為(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.按下列要求分配6本不同的書,各有多少種不同的分配方式?
(1)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;
(2)平均分配給甲、乙、丙三人,每人2本;
(3)分成三份,1份4本,另外兩份每份1本;
(4)甲得1本,乙得1本,丙得4本.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.不等式$\frac{2x-1}{x+1}≤1$的解集為(-1,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.命題“?x∈[-1,2],x2-a≥0”是真命題的一個充分不必要條件是(  )
A.a≥4B.a≤-1C.a≤0D.a≤1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合A={x|x(x-1)>0},集合B={x|lnx≥0},則“x∈A”是“x∈B”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在△ABC中,角A,B,C所對的邊分別為a,b,c,若$\frac{a}$=$\frac{\sqrt{3}cosB}{sinA}$,則cosB=( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.±$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.將下列極坐標方程化為直角坐標方程
(1)ρ(2cosθ+5sinθ)-4=0;
(2)ρ=2cosθ-4sinθ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,且△ABC的面積為10$\sqrt{3}$,a+b=13,∠C=60°,求這個三角形的各邊長.

查看答案和解析>>

同步練習冊答案