分析 把(2x-$\frac{1}{4x\sqrt{x}}$)5按照二項式定理展開,可得展開式中(x+3)(2x-$\frac{1}{4x\sqrt{x}}$)5的展開式中常數(shù)項.
解答 解:(x+3)(2x-$\frac{1}{4x\sqrt{x}}$)5 =(x+3)•(${C}_{5}^{0}$•32x5-${C}_{5}^{1}$•4x2$\sqrt{x}$+${C}_{5}^{2}$•$\frac{1}{2}$-${C}_{5}^{3}$•$\frac{1}{16}$$\frac{\sqrt{x}}{{x}^{2}}$+${C}_{5}^{4}$•$\frac{1}{12{8x}^{5}}$-${C}_{5}^{5}$•$\frac{1}{1024{•x}^{\frac{15}{2}}}$),
故它的 展開式中常數(shù)項為3•${C}_{5}^{2}$•$\frac{1}{2}$=15,
故答案為:15.
點評 本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | ±$\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com