(cos
π
12
+sin
π
12
)(cos
π
12
-sin
π
12
)=
 
考點:二倍角的余弦
專題:三角函數(shù)的求值
分析:利用平方差公式化簡后由二倍角的余弦公式化簡即可求值.
解答: 解:(cos
π
12
+sin
π
12
)(cos
π
12
-sin
π
12
)=cos2
π
12
-sin2
π
12
=
1+cos
π
6
2
-
1-cos
π
6
2
=
1+
3
2
2
-
1-
3
2
2
=
3
2

故答案為:
3
2
點評:本題考查了二倍角的余弦公式,平方差公式,特殊角的三角函數(shù)值的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角α終邊上一點A的坐標是(2sin
π
3
,2cos
π
3
),則α的弧度數(shù)是( 。
A、
π
6
B、
π
3
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)有兩定點A、B及動點P,設(shè)命題甲:“|PA|+|PB|是定值”,命題乙:“點P的軌跡是以A、B為焦點的橢圓”,則甲是乙的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一個圓的圓心在直線y=2x上,在y軸上截得的弦的長度等于2,且與直線x-y+
2
=0相切,則這個圓的方程可能是( 。
A、x2+y2-x-2y=0
B、x2+y2+2x+4y=0
C、x2+y2-2=0
D、x2+y2-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點M(1,0),N(-1,0),點P為直線2x-y-1=0上的動點.求PM2+PN2的最小值及取最小值時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的首項a1及公差d都是整數(shù),且前n項和為Sn,若a1>1,a4>3,S3≤9,則數(shù)列{an}的通項公式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)在(-1,1)上有定義f(
1
2
)=1
,且滿足x,y∈(-1,1)有f(x)-f(y)=f(
x-y
1-xy
)
,對數(shù)列x1=
1
2
,xn+1=
2xn
x
2
n

(1)證明:f(x)在(-1,1)上為奇函數(shù);
(2)求f(xn)的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)如圖所示的框圖,建立打印數(shù)列的遞推公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示的程序框圖,運行相應(yīng)的程序,若輸入x的值為-4,則輸出的y值是
 

查看答案和解析>>

同步練習(xí)冊答案