13.已知:a>0,b>0,a+4b=4
(1)求ab的最大值;
(2)求$\frac{1}{a}$+$\frac{4}$的最小值.

分析 (1)利用基本不等式的性質(zhì)即可得出.
(2)變形$\frac{1}{a}$+$\frac{4}$=$\frac{1}{4}$(a+4b)$(\frac{1}{a}+\frac{4})$=$\frac{1}{4}$$(1+16+\frac{4b}{a}+\frac{4a})$,利用基本不等式的性質(zhì)即可得出.

解答 解:(1)∵a>0,b>0,∴a+4b=4≥2$\sqrt{a•4b}$,化為ab≤1,當(dāng)且僅當(dāng)a=2,b=$\frac{1}{2}$時取等號.
∴ab的最大值為1.
(2)∵a>0,b>0,∴$\frac{1}{a}$+$\frac{4}$=$\frac{1}{4}$(a+4b)$(\frac{1}{a}+\frac{4})$=$\frac{1}{4}$$(1+16+\frac{4b}{a}+\frac{4a})$≥$\frac{1}{4}(17+4×2\sqrt{\frac{a}×\frac{a}})$=$\frac{25}{4}$,當(dāng)且僅當(dāng)a=b=$\frac{4}{5}$時取等號.
∴$\frac{1}{a}$+$\frac{4}$的最小值為$\frac{25}{4}$.

點評 本題考查了基本不等式的性質(zhì)、“乘1法”,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)y=f(x),若在定義域內(nèi)存在x0,使得f(-x0)=-f(x0)成立,則稱x0為函數(shù)f(x)的局部對稱點.
(I)若a∈R且a≠0,求函數(shù)f(x)=ax2+x-a的“局部對稱點”;
(II)若函數(shù)f(x)=4x-m•2x+1+m2-3在R上有局部對稱點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)求不等式a2x-1>ax+2(a>0,且a≠1)中x的取值范圍(用集合表示).
(2)已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=$\sqrt{x}$+1,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=2|x|的定義域為[a,b],值域為[1,4],方程b=g(a)表示的圖形可以是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知冪函數(shù)f(x)=(m2-3m+3)xm+1為偶函數(shù),g(x)=loga[f(x)-ax](a>0且a≠1).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若g(x)在區(qū)間(2,3)上為增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列結(jié)論正確的是( 。
A.當(dāng)x>0且x≠1時,$lgx+\frac{1}{lgx}≥2$B.當(dāng)x>0時,$\sqrt{x}+\frac{1}{{\sqrt{x}}}≥2$
C.當(dāng)x≥2時,$x+\frac{1}{x}≥2$D.當(dāng)0<x≤2時,$x-\frac{1}{x}$無最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=alnx+ax2+bx,(a,b∈R).
(1)設(shè)a=1,f(x)在x=1處的切線過點(2,6),求b的值;
(2)設(shè)b=a2+2,求函數(shù)f(x)在區(qū)間[1,4]上的最大值;
(3)定義:一般的,設(shè)函數(shù)g(x)的定義域為D,若存在x0∈D,使g(x0)=x0成立,則稱x0為函數(shù)g(x)的不動點.設(shè)a>0,試問當(dāng)函數(shù)f(x)有兩個不同的不動點時,這兩個不動點能否同時也是函數(shù)f(x)的極值點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示,在空間四邊形ABCD中,E,F(xiàn)分別為AB,AD的中點,G,H分別在BC,CD上,且BG:GC=DH:HC=1:2,求證:
(1)E,F(xiàn),G,H四點共面;
(2)EG與HF的交點在直線AC上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知全集U=R,A={x|x≥3},B={x|x2-8x+7≤0},C={x|x≥a-1}.
(Ⅰ)求A∩B,A∪(∁UB);
(Ⅱ)若A∪C=A,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案