7.下列命題正確的個(gè)數(shù)是(  )
①對(duì)于兩個(gè)分類(lèi)變量X與Y的隨機(jī)變量K2的觀測(cè)值k來(lái)說(shuō),k越小,判斷“X與Y有關(guān)系”的把握程度越大;
②在相關(guān)關(guān)系中,若用y1=c1e${\;}^{{c}_{2}x}$擬合時(shí)的相關(guān)指數(shù)為R12,用y2=bx+a擬合時(shí)的相關(guān)指數(shù)為R22,且R12>R22,則y1的擬合效果好;
③利用計(jì)算機(jī)產(chǎn)生0~1之間的均勻隨機(jī)數(shù)a,則事件“3a-1>0”發(fā)生的概率為$\frac{2}{3}$;
④“x>-1”是“$\frac{1}{x}$<-1”的充分不必要條件.
A.4B.3C.2D.1

分析 ①根據(jù)獨(dú)立性檢驗(yàn)的進(jìn)行判斷,
②根據(jù)相關(guān)關(guān)系相關(guān)指數(shù)為R22,的意義進(jìn)行判斷,
③根據(jù)幾何概型的概率公式進(jìn)行求解.
④根據(jù)充分條件和必要條件的定義進(jìn)行判斷.

解答 解:①根據(jù)兩個(gè)分類(lèi)變量X與Y的隨機(jī)變量k2的觀測(cè)值k來(lái)說(shuō),k2越大,判斷“X與Y有關(guān)系”的把握程度越大,故①錯(cuò)誤,
②在相關(guān)關(guān)系中,若用y1=c1e${\;}^{{c}_{2}x}$擬合時(shí)的相關(guān)指數(shù)為R12,用y2=bx+a擬合時(shí)的相關(guān)指數(shù)為R22,且R12>R22,則y1的擬合效果好;正確
③利用計(jì)算機(jī)產(chǎn)生0~1之間的均勻隨機(jī)數(shù)a,由3a-1>0得a>$\frac{1}{3}$,
則事件“3a-1>0”發(fā)生的概率P=$\frac{1-\frac{1}{3}}{1}$=$\frac{2}{3}$;故③正確,
④由$\frac{1}{x}$<-1得-1<x<0,
則“x>-1”是“$\frac{1}{x}$<-1”的
必要不充分條件,故④錯(cuò)誤,
故正確的是②③,
故選:C

點(diǎn)評(píng) 本題主要考查命題的真假判斷涉及的知識(shí)點(diǎn)交點(diǎn),綜合性較強(qiáng),但難度不大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,△ABC為等邊三角形,且AB=$\sqrt{2}$BB1=$\sqrt{2}$,則AB1與C1B所成的角的大小為( 。
A.60°B.90°C.105°D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),過(guò)橢圓的上頂點(diǎn)與右頂點(diǎn)的直線l,與圓x2+y2=$\frac{12}{7}$相切,且橢圓C的右焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合;
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)O作兩條互相垂直的射線與橢圓C分別交于A,B兩點(diǎn),求△OAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知數(shù)列{an}滿(mǎn)足a1=1,an-an-1=n(n≥2),則數(shù)列{an}的通項(xiàng)公式an=$\frac{1}{2}$n(n+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,四棱錐S-ABCD中,AB∥CD,BC⊥CD,側(cè)面SAB為等邊三角形,AB=BC=2,CD=1,SD=$\sqrt{7}$.
(Ⅰ)求證:CD⊥SD;
(Ⅱ)求SB與面SCD成的線面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若復(fù)數(shù)z=$\frac{a+i}{2i}$(a∈R,i為虛數(shù)單位)的實(shí)部與虛部相等,則z的模等于$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)f(x)=x+alnx,若曲線y=f(x)在點(diǎn)(a,f(a))處的切線過(guò)原點(diǎn),則實(shí)數(shù)a的值為e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{{\sqrt{3}}}{3}$,點(diǎn)M在橢圓上,且滿(mǎn)足MF2⊥x軸,$|{M{F_1}}|=\frac{{4\sqrt{3}}}{3}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線y=kx+2交橢圓于A,B兩點(diǎn),求△ABO(O為坐標(biāo)原點(diǎn))面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知等差數(shù)列{an}的前三項(xiàng)為a-1,4,2a,記前n項(xiàng)和為Sn
(1)若Sk=30,求a和k的值;
(2)設(shè)bn=$\frac{S_n}{n}$,求b1+b2+b3+…bn的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案