17.在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,△ABC為等邊三角形,且AB=$\sqrt{2}$BB1=$\sqrt{2}$,則AB1與C1B所成的角的大小為( 。
A.60°B.90°C.105°D.75°

分析 根據(jù)條件可作出圖形,并且得到B1A1=B1B,根據(jù)向量的加法及數(shù)乘的幾何意義便可得到$\overrightarrow{A{B}_{1}}=-(\overrightarrow{{B}_{1}{A}_{1}}+\overrightarrow{{B}_{1}B})$,$\overrightarrow{{C}_{1}B}=-\overrightarrow{{B}_{1}{C}_{1}}+\overrightarrow{{B}_{1}B}$,從而可求得$\overrightarrow{A{B}_{1}}•\overrightarrow{{C}_{1}B}=0$,這樣即可得出AB1和C1B所成角的大。

解答 解:如圖,根據(jù)條件,AB=$\sqrt{2}$,B1B=1;
又$\overrightarrow{A{B}_{1}}=-(\overrightarrow{{B}_{1}{A}_{1}}+\overrightarrow{{B}_{1}B})$,$\overrightarrow{{C}_{1}B}=-\overrightarrow{{B}_{1}{C}_{1}}+\overrightarrow{{B}_{1}B}$;
$\overrightarrow{A{B}_{1}}•\overrightarrow{{C}_{1}B}=\overrightarrow{{B}_{1}{A}_{1}}•\overrightarrow{{B}_{1}{C}_{1}}$$-\overrightarrow{{B}_{1}{A}_{1}}•\overrightarrow{{B}_{1}B}+\overrightarrow{{B}_{1}B}•\overrightarrow{{B}_{1}{C}_{1}}-{\overrightarrow{{B}_{1}B}}^{2}$=1-1=0;
∴$\overrightarrow{A{B}_{1}}⊥\overrightarrow{{C}_{1}B}$;
∴AB1和C1B所成的角的大小為90°.
故選:B.

點(diǎn)評 考查三棱柱的定義,向量加法的平行四邊形法則,向量加法和數(shù)乘的幾何意義,以及向量數(shù)量積的運(yùn)算,向量垂直的充要條件,向量的方法求異面直線所成角的大小,以及異面直線所成角的概念.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在平面直角坐標(biāo)系中,橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,其左頂點(diǎn)為A,上頂點(diǎn)為B且△AOB的面積為4.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若直線l:y=x+m交橢圓E于點(diǎn)G,H,原點(diǎn)O到直線l的距離為$\frac{{4\sqrt{5}}}{5}$,試判斷點(diǎn)O與以線段GH為直徑的圓的位置關(guān)系,并給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知△ABC的三個(gè)內(nèi)角A,B,C所對的邊長分別為a,b,c,且a2+b2=c2+ab,c=$\sqrt{3}$.
數(shù)列{an}是等比數(shù)列,且首項(xiàng)a1=$\frac{1}{2}$,公比為$\frac{sinA}{a}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=-$\frac{lo{g}_{2}{a}_{n}}{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{x}{lnx}$,g(x)=ax+1.(e是自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)x∈(1,e2]時(shí),求函數(shù)f(x)圖象上點(diǎn)M處切線斜率的最大值;
(Ⅱ) 若h(x)=f(x)+g(x)在點(diǎn)(e,h(e))處的切線l與直線x-y-2=0垂直,求切線l方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,且4S3=7a3,則數(shù)列{an}的公比q=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.曲線C是平面內(nèi)與三個(gè)定點(diǎn)F1(-1,0),F(xiàn)2(1,0)和F3(0,1)的距離的和等于2$\sqrt{2}$的點(diǎn)的軌跡.給出下列四個(gè)結(jié)論:
①曲線C關(guān)于x軸、y軸均對稱;
②曲線C上存在一點(diǎn)P,使得|PF3|=$\frac{{2\sqrt{2}}}{3}$;
③若點(diǎn)P在曲線C上,則△F1PF2的面積最大值是1;
④三角形PF2F3面積的最大值為$\frac{{\sqrt{3}}}{2}$;
其中所有真命題的序號是③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.命題p:若直線l1:x+ay=1與直線l2:ax+y=0平行,則a≠-1;命題q:?ω>0,使得y=cosωx的最小正周期小于$\frac{π}{2}$,則下列命題為假命題的是( 。
A.¬pB.qC.p∧qD.p∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)g(x)是定義在[a-15,2a]上的奇函數(shù),且f(x)=$\left\{{\begin{array}{l}{{x^2}+1,(x<0)}\\{f(x-a),(x≥0)}\end{array}}$,則f(2016)=(  )
A.2B.5C.10D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列命題正確的個(gè)數(shù)是( 。
①對于兩個(gè)分類變量X與Y的隨機(jī)變量K2的觀測值k來說,k越小,判斷“X與Y有關(guān)系”的把握程度越大;
②在相關(guān)關(guān)系中,若用y1=c1e${\;}^{{c}_{2}x}$擬合時(shí)的相關(guān)指數(shù)為R12,用y2=bx+a擬合時(shí)的相關(guān)指數(shù)為R22,且R12>R22,則y1的擬合效果好;
③利用計(jì)算機(jī)產(chǎn)生0~1之間的均勻隨機(jī)數(shù)a,則事件“3a-1>0”發(fā)生的概率為$\frac{2}{3}$;
④“x>-1”是“$\frac{1}{x}$<-1”的充分不必要條件.
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊答案