【題目】某班50名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?3秒到19秒之間,下圖是這次測(cè)試成績(jī)的頻率分布直方圖.設(shè)成績(jī)小于17秒的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比為x,成績(jī)大于等于15秒且小于17秒的學(xué)生人數(shù)為y,則x和y分別為(  )

A. 10%,45B. 90%,45C. 10%,35D. 90%,35

【答案】D

【解析】

根據(jù)頻率分布直方圖,先求出成績(jī)小于17秒的學(xué)生人數(shù)占百分比為:1-0.06-0.04=0.9

再求出績(jī)大于等于15秒且小于17秒的學(xué)生的頻率,然后求得學(xué)生人數(shù).

由頻率分布直方圖可知成績(jī)小于17秒的學(xué)生人數(shù)占百分比為:

1-0.06-0.04=0.9,故x=0.9

成績(jī)大于等于15秒且小于17秒的學(xué)生的頻率為:

0.36+0.34=0.7

故大于等于15秒且小于17秒的學(xué)生的人數(shù)為:

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,,點(diǎn)為棱的中點(diǎn),

(1)證明

(2)若點(diǎn)為棱上一點(diǎn),且求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率,點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn),面積的最大值是

(1)求橢圓的方程;

(2)若是橢圓上不重合的四點(diǎn),相交于點(diǎn),,且,求此時(shí)直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“劍橋?qū)W派”創(chuàng)始人之一數(shù)學(xué)家哈代說(shuō)過(guò):“數(shù)學(xué)家的造型,同畫(huà)家和詩(shī)人一樣,也應(yīng)當(dāng)是美麗的”;古希臘數(shù)學(xué)家畢達(dá)哥拉斯創(chuàng)造的“黃金分割”給我們的生活處處帶來(lái)美;我國(guó)古代數(shù)學(xué)家趙爽創(chuàng)造了優(yōu)美“弦圖”.“弦圖”是由四個(gè)全等的直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形,如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為,則等于(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)在圓內(nèi)直徑所對(duì)的圓周角是直角.此定理在橢圓內(nèi)(以焦點(diǎn)在軸上的標(biāo)準(zhǔn)形式為例)可表述為“過(guò)橢圓的中心的直線(xiàn)交橢圓于兩點(diǎn),點(diǎn)是橢圓上異于的任意一點(diǎn),當(dāng)直線(xiàn),斜率存在時(shí),它們之積為定值.”試求此定值;

(2)在圓內(nèi)垂直于弦的直徑平分弦.類(lèi)比(1)將此定理推廣至橢圓,不要求證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠(chǎng)生產(chǎn)、兩種元件,其質(zhì)量按測(cè)試指標(biāo)劃分為:大于或等于為正品,小于為次品.現(xiàn)從一批產(chǎn)品中隨機(jī)抽取這兩種元件各件進(jìn)行檢測(cè),檢測(cè)結(jié)果記錄如下:







B






由于表格被污損,數(shù)據(jù)看不清,統(tǒng)計(jì)員只記得,且、兩種元件的檢測(cè)數(shù)據(jù)的平均值相等,方差也相等.

1)求表格中的值;

2)從被檢測(cè)的種元件中任取件,求件都為正品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)下列命題:( )

函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng); 函數(shù)是周期函數(shù);

當(dāng)時(shí),函數(shù)取最大值;函數(shù)的圖象與函數(shù)的圖象沒(méi)有公共點(diǎn),其中正確命題的序號(hào)是

(A)①③ (B)②③ (C)①④ (D)②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓的長(zhǎng)軸長(zhǎng)為,過(guò)點(diǎn)的直線(xiàn)軸垂直,橢圓的離心率, 為橢圓的左焦點(diǎn),.

求此橢圓的方程;

設(shè)是此橢圓上異于的任意一點(diǎn), , 為垂足,延長(zhǎng)到點(diǎn)使得.連接并延長(zhǎng),交直線(xiàn)于點(diǎn)的中點(diǎn),判定直線(xiàn)與以為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)過(guò)原點(diǎn)作函數(shù)的切線(xiàn),求的方程;

(Ⅱ)若對(duì)于任意恒成立,試確定實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案