若θ∈[-
3
,
π
6
],試確定cosθ的范圍.
考點:余弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)余弦函數(shù)的圖象進行求解即可.
解答: 解:∵θ∈[-
3
π
6
],∈[
π
6
,
3
),
∴cos(-
3
)≤cosθ≤1,
即-
1
2
≤cosθ≤1.
點評:本題主要考查三角函數(shù)的取值范圍,利用余弦函數(shù)的圖象和性質(zhì)是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,A1B⊥平面ABC,AB⊥AC.
(Ⅰ)求證:AC⊥BB1
(Ⅱ)若P是棱B1C1的中點,求平面PAB將三棱柱ABC-A1B1C1分成的兩部分體積之比.擼啊.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列a,b,c成等比數(shù)列,數(shù)列a,
b(b-1)
2
,c成等差數(shù)列,當1<a<3<c<7時,b的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=
6
,O為AC與BD的交點,E為棱PB上一點.
(Ⅰ)證明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱錐P-EAD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

兩平行直線x+y+2=0與2x+2y-5=0的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點M在圓心為C1的方程x2+y2+6x-2y+1=0上,點N在圓心為C2的方程x2+y2+2x+4y+1=0上,求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a
x
+x(a∈R)在[2,+∞)上單調(diào)遞增,則a的取值范圍是( 。
A、(0,4)
B、(-∞,4]
C、(0,2)
D、(-∞,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線E:y2=2px(p>0)的焦點F的直線l交E于A、B兩點,由點A、B作拋物線準線m的垂線,垂足分別為點D、C,向四邊形ABCD內(nèi)部隨機投一點,則該點落在△CFD內(nèi)部的概率的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正四面體ABCD的棱長為2,點E,F(xiàn)分別為棱BC,AD的中點,則
EF
BA
的值為( 。
A、4B、-4C、-2D、2

查看答案和解析>>

同步練習冊答案