13.直線a、b、c兩兩平行,但不共面,經(jīng)過其中2條直線的平面共有( 。
A.1個B.2個C.3個D.0或有無數(shù)多個

分析 由于公理2及其推論可得正確結(jié)論.

解答 解:由于過兩平行的直線有且只有一個平面,
則經(jīng)過其中兩條直線的平面有3個.
故選:C.

點(diǎn)評 本題考查平面的基本性質(zhì)及推論,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=2cos($\frac{π}{3}$x+$\frac{π}{6}$)圖象上的最高點(diǎn)與最低點(diǎn)的最短距離是( 。
A.2B.4C.5D.2$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.化簡或求值:
(Ⅰ)2-2×(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-($\frac{8}{27}$)${\;}^{\frac{1}{3}}$+(3$\frac{1}{3}$)0;
(Ⅱ)lg22+lg2•lg5+$\sqrt{l{g}^{2}2-lg4+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}y≤4-x\\ 2x-y+1≥0\\ x-4y-4≤0\end{array}\right.$,則z=x-2y的最大值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,AB是半圓O的直徑,C是半圓O上除A、B外的一個動點(diǎn),DC垂直于半圓O所在的平面,DC∥EB,DC=EB=1,AB=4.
(Ⅰ)證明:平面ADE⊥平面ACD;
(Ⅱ)若AC=BC,求二面角D-AE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\frac{{x}^{2}+sinx}{sinx}$,若f($\frac{π}{8}$)=a,則f(-$\frac{π}{8}$)=( 。
A.1-aB.2-aC.1+aD.2+a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)f(x)是奇函數(shù),且在(0,+∞)上是增函數(shù),又f(-3)=0,則(x-2)f(x)<0的解集是( 。
A.(-3,0)∪(2,3)B.(-∞,-3)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,Q是棱PA上的動點(diǎn).

(1)若Q是PA的中點(diǎn),求證:PC∥平面BDQ;
(2)若PB=PD,求證:BD⊥CQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)g(x)=$\frac{{4}^{x}-a}{{2}^{x}}$是奇函數(shù),f(x)=lg(10x+1)+bx是偶函數(shù).
(1)求a+b的值.
(2)若對任意的t∈[0,+∞),不等式g(t2-2t)+g(2t2-k)>0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案