分析 (1)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的定義域和值域,得出結(jié)論.
(2)根據(jù)f(x)的解析式,以及正弦函數(shù)的單調(diào)性,得出結(jié)論.
解答 解:(1)由題意可得,把函數(shù)y=sinx的圖象向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度得到y(tǒng)=sin(x+$\frac{π}{6}$)的圖象,
再把橫坐標(biāo)縮短為原來(lái)的2倍,可得y=sin($\frac{1}{2}$x+$\frac{π}{6}$)=cos[$\frac{π}{2}$-($\frac{1}{2}$x+$\frac{π}{6}$)]=cos($\frac{1}{2}$x-$\frac{π}{3}$)的圖象,
∴$f(x)=cos(\frac{1}{2}x-\frac{π}{3})$.
∵0≤x≤π,∴$-\frac{π}{3}≤\frac{1}{2}x-\frac{π}{3}≤\frac{π}{6}$,∴$\frac{1}{2}≤cos(\frac{1}{2}x-\frac{π}{3})≤1$,∴$f(x)∈[\frac{1}{2},1]$,
當(dāng)x=0時(shí),$f(x)=\frac{1}{2}$;當(dāng)$x=\frac{2π}{3}$時(shí),f(x)=1.
(2)令$2kπ-π≤\frac{1}{2}x-\frac{π}{3}≤2kπ$,k∈Z,解得$4kπ-\frac{4}{3}π≤x≤4kπ+\frac{2}{3}π$,k∈Z,
所以單調(diào)遞增區(qū)間為$[4kπ-\frac{4}{3}π,4kπ+\frac{2}{3}π]$,k∈Z;
同理單調(diào)遞減區(qū)間為$[4kπ+\frac{2}{3}π,4kπ+\frac{8}{3}π]$,k∈Z,
∵x∈[0,π],∴f(x)的單調(diào)遞增區(qū)間為$[0,\frac{2π}{3}]$,單調(diào)遞減區(qū)間為$[\frac{2π}{3},π]$.
點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性、定義域和值域,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向量$\overrightarrow{a}$與$\overrightarrow$不共線,則$\overrightarrow{a}$與$\overrightarrow$都是非零向量 | |
B. | 任意兩個(gè)相等的非零向量的始點(diǎn)與終點(diǎn)是一平行四邊形的四個(gè)頂點(diǎn) | |
C. | $\overrightarrow{a}$與$\overrightarrow$共線,$\overrightarrow$與$\overrightarrow{c}$共線,則$\overrightarrow{a}$與$\overrightarrow{c}$也共線 | |
D. | 有相同起點(diǎn)的兩個(gè)非零向量不平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 21π | B. | 24π | C. | 28π | D. | 36π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4\sqrt{3}}{3}$ | B. | $4\sqrt{3}$ | C. | $\frac{{2\sqrt{3}}}{3}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com