16.“$α=\frac{π}{6}$”是“$sinα=\frac{1}{2}$”的(  )條件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

分析 “$α=\frac{π}{6}$”⇒“$sinα=\frac{1}{2}$”,反之不成立,例如α=$\frac{5π}{6}$.即可判斷出結(jié)論.

解答 解:“$α=\frac{π}{6}$”⇒“$sinα=\frac{1}{2}$”,反之不成立,例如α=$\frac{5π}{6}$.
因此“$α=\frac{π}{6}$”是“$sinα=\frac{1}{2}$”的充分不必要條件.
故選:A.

點(diǎn)評 本題考查了簡易邏輯的判定方法、三角函數(shù)求值,考查了推理能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知全集A={1,2,3,4,5,6},B={y|y=2x-1,x∈A},則A∩B=( 。
A.{1,2,3,4}B.{1,2,3}C.{1,3,5}D.{2,4,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,若a5a6=9,則log3a1+log3a2+…+log3a10=( 。
A.12B.2+log35C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)$f(x)=2sin({ωx+\frac{π}{6}})({ω>0})$的圖象與x軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為$\frac{π}{2}$的等差數(shù)列,把函數(shù)f(x)圖象沿x軸向左平移$\frac{π}{6}$個(gè)單位,得到函數(shù)g(x)的圖象.關(guān)于函數(shù)g(x),下列說法正確的是( 。
A.在$[{\frac{π}{4},\frac{π}{2}}]$上是增函數(shù)
B.其圖象關(guān)于直線$x=-\frac{π}{4}$對稱
C.函數(shù)g(x)是奇函數(shù)
D.當(dāng)$x∈[{\frac{π}{6},\frac{2π}{3}}]$時(shí),函數(shù)g(x)的值域是[-2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求函數(shù)y=sinx+$\sqrt{3}$cosx的周期,對稱軸方程并指出圖象可由正弦曲線經(jīng)過怎樣的變化得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.化簡tan20°+4sin20°的結(jié)果為( 。
A.1B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,函數(shù)f(x)的圖象是折線段ABC,其中點(diǎn)A,B,C的坐標(biāo)分別為(0,4),(2,0),(6,4),則f{f[f(2)]}=( 。
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知直線a、b及平面α,在下列命題:中,正確的有( 。
①$\left.{\begin{array}{l}{b?α}\\{a⊥α}\end{array}}\right\}⇒a⊥b$②$\left.{\begin{array}{l}{a⊥b}\\{a⊥α}\end{array}}\right\}⇒b∥α$
③$\left.{\begin{array}{l}{a∥b}\\{a⊥α}\end{array}}\right\}⇒b⊥α$④$\left.{\begin{array}{l}{a∥α}\\{b?α}\end{array}}\right\}⇒a∥b$.
A.、①②B.②③C.③④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若集合A⊆M={1,2,3,4,5,6,7},且滿足“若2k∈A,則2k-1∈A且2k+1∈A,k∈N”,則A中有多少個(gè)包含兩個(gè)偶數(shù)的子集?

查看答案和解析>>

同步練習(xí)冊答案