16.若x,y∈R且滿足不等式組$\left\{\begin{array}{l}x≥1\\ x+y-4≤0\\ x-y-2≤0\end{array}\right.$,不等式組所表示的平面區(qū)域的面積為4,目標(biāo)函數(shù)z=3x+y的最大值為10.

分析 作出不等式組對應(yīng)的平面區(qū)域,求出交點坐標(biāo),利用z的幾何意義,即可求出z的最大值.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖
由$\left\{\begin{array}{l}{x=1}\\{x+y-4=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即A(1,3),
由$\left\{\begin{array}{l}{x=1}\\{x-y-2=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$,即C(1,-1),
由$\left\{\begin{array}{l}{x+y-4=0}\\{x-y-2=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,即B(3,1),
則AC=3-(-1)=4,
則三角形的面積S=$\frac{1}{2}×4×(3-1)=\frac{1}{2}×4×2$=4
由z=3x+y得y=-3x+z,
平移直線y=-3x+z由圖象可知當(dāng)直線y=-3x+z經(jīng)過點B(3,1)時y=-3x+z的截距最大,此時z最大.
代入z=3x+y得z=9+1=10.
即目標(biāo)函數(shù)z=3x+y的最大值為10
故答案為:.4;10

點評 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知拋物線C1:y2=4x的焦點F恰好是橢圓C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點,且兩條曲線C1與C2交點的連線過點F,則橢圓C2的長軸長等于( 。
A.$\sqrt{2}$+1B.2C.2$\sqrt{2}$+2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知復(fù)數(shù)z滿足z(1-i)=2i,其中i為虛數(shù)單位,則|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.二項式(x-2)5展開式中x的系數(shù)為( 。
A.5B.16C.80D.-80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$0<α<\frac{π}{2}$,$sinα=\frac{4}{5}$,$tan(α-β)=-\frac{1}{3}$,則tanβ=3;$\frac{{sin(2β-\frac{π}{2})•sin(β+π)}}{{\sqrt{2}cos(β+\frac{π}{4})}}$=$\frac{6}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,設(shè)M為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)上任意一點,O為原點,過點M作雙曲線兩漸近線的平行線,分別與兩漸近線交于A,B兩點,探求平行四邊形MAOB的面積,由此可以發(fā)現(xiàn)什么結(jié)論?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程:
(1)a=2$\sqrt{5}$,過點A(-5,2),焦點在x軸上;
(2)b=1,焦點為(0,±$\sqrt{10}$):
(3)一個焦點為(-5,0),且離心率為$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=xsinx+cosx的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.二項式($\frac{x}{3}$+$\frac{3}{x}$)10的展開式中不含x的項是第6項,即252..

查看答案和解析>>

同步練習(xí)冊答案