5.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,側(cè)面PBC是直角三角形,∠PCB=90°,點(diǎn)E是PC的中點(diǎn),且平面PBC⊥平面ABCD.證明:
(1)AP∥平面BED;
(2)平面APC⊥平面BED.

分析 (1)取AC,BD的交點(diǎn)O,連結(jié)OE,根據(jù)中位線定理得出OE∥AP,故而AP∥平面BDE;
(2)由平面PBC⊥平面ABCD得出PC⊥平面ABCD,故而PC⊥BD,由菱形性質(zhì)得出BD⊥AC,故而BD⊥平面PAC,于是平面APC⊥平面BED.

解答 證明:(1)設(shè)AC∩BD=O,連結(jié)OE
∵四邊形ABCD是平行四邊形,
∴O為BD中點(diǎn).又E是PC的中點(diǎn),
∴AP∥OE.又AP?平面BED,OE?平面BED.
∴AP∥平面BED.
(2)平面PBC⊥平面ABCD,∠PCB=90°,
∴PC⊥平面ABCD.又BD?平面ABCD,
∴PC⊥BD.
∵平面ABCD是菱形,
∴AC⊥BD,又PC?平面PAC,AC?平面PAC,AC∩PC=C,
∴BD⊥平面APC.又BD?平面BED,
∴平面PAC⊥平面BED.

點(diǎn)評 本題考查了線面平行的判定,面面垂直的性質(zhì)與判定,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=(C${\;}_{10}^{1}$x+1)(C${\;}_{10}^{2}$x+1)…(C${\;}_{10}^{7}$x+1)(C${\;}_{10}^{8}$x+1),則f′(0)=1012(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在四棱錐P-ABCD中,底面ABCD為菱形,∠DAB=60°,PC⊥平面ABCD,且AB=2,PC=$\sqrt{6}$,F(xiàn)是PC的中點(diǎn).
(Ⅰ)求證:PA∥平面DBF;
(Ⅱ)求直線PA和平面PBC所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某班甲、乙兩名同學(xué)參加100米達(dá)標(biāo)訓(xùn)練,在相同條件下兩人10次訓(xùn)練的成績(單位:秒)如下:
12345678910
11.612.213.213.914.011.513.114.511.714.3
12.313.314.311.712.012.813.213.814.112.5
(1)請完成樣本數(shù)據(jù)的莖葉圖(在答題卷中);如果從甲、乙兩名同學(xué)中選一名參加學(xué)校的100米比賽,從成績的穩(wěn)定性方面考慮,選派誰參加比賽更好,并說明理由(不用計算,可通過統(tǒng)計圖直接回答結(jié)論);
(2)從甲、乙兩人的10次訓(xùn)練成績中各隨機(jī)抽取一次,求抽取的成績中至少有一個比12.8秒差的概率;
(3)經(jīng)過對甲、乙兩位同學(xué)的多次成績的統(tǒng)計,甲、乙的成績都均勻分布在區(qū)間[11,15](單位:秒)之內(nèi),現(xiàn)甲、乙比賽一次,求甲、乙成績之差的絕對值小于0.8秒的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知集合A={1,a},B={1,3,4},且A∩B={1,3},則實(shí)數(shù)a的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.將函數(shù)f(x)=2sin(2x+$\frac{π}{6}$)的圖象至少向右平移$\frac{π}{12}$個單位,所得圖象恰關(guān)于坐標(biāo)原點(diǎn)對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在平行四邊形ABCD中,E為BC的中點(diǎn),F(xiàn)為DC的中點(diǎn),若$\overrightarrow{AC}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{BF}$,則λ+μ的值為$\frac{8}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某幼兒園從新入學(xué)的女童中,隨機(jī)抽取50名,其身高(單位:cm)的頻率分布表如表:
分組(身高)[80,85)[85,90)[90,95)[95,100)
頻數(shù)(人數(shù))5102015
(1)完成下列頻率分布直方圖;
(2)用分層抽樣的方法從身高在[80,85)和[95,100)的女童中共抽取4人,其中身高在[80,85)的有幾人?
(3)在(2)中抽取的4個女童中,任取2名,求身高在[80,85)和[95,100)中各有1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知定義在R上的函數(shù)f(x)=$\left\{\begin{array}{l}x({|x|+1}),x<1\\{log_2}x+1,x≥1\end{array}$,若直線y=a與函數(shù)y=f(x)的圖象恰有兩個交點(diǎn),則實(shí)數(shù)a的取值范圍是[1,2).

查看答案和解析>>

同步練習(xí)冊答案