根據(jù)如圖所示的流程圖,將輸出的的值依次分別記為,將輸出的的值依次分別記為

(Ⅰ)求數(shù)列,通項(xiàng)公式;
(Ⅱ)依次在中插入個(gè)3,就能得到一個(gè)新數(shù)列,則是數(shù)列中的第幾項(xiàng)?
(Ⅲ)設(shè)數(shù)列的前項(xiàng)和為,問是否存在這樣的正整數(shù),使數(shù)列的前項(xiàng)的和,如果存在,求出的值,如果不存在,請(qǐng)說明理由.
(1),;(2)是數(shù)列中的第17項(xiàng);(3)當(dāng)時(shí),
Ⅰ)由流程圖,,
是公差為1的等差數(shù)列.∴
由流程圖,,

是首項(xiàng)為1,公比為3的等比數(shù)列.
,∴
(Ⅱ)的前幾項(xiàng)為,
=4,∴是數(shù)列中的第17項(xiàng).
(Ⅲ)數(shù)列中,項(xiàng)(含)前的所有項(xiàng)的和是:
,
當(dāng)時(shí),其和為,
當(dāng)時(shí),其和為
又因?yàn)?008-1120=888=296×3,是3的倍數(shù),
故當(dāng)時(shí),
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知曲線.從點(diǎn)向曲線引斜率為的切線,切點(diǎn)為。
(1)求數(shù)列的通項(xiàng)公式;
(2)證明:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列的各項(xiàng)均為正值,,對(duì)任意,都成立.
求數(shù)列、的通項(xiàng)公式;
當(dāng)時(shí),證明對(duì)任意都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,一條螺旋線是用以下方法畫成:ΔABC是邊長(zhǎng)為1的正三角形,曲線CA1,A1A2,A2A3分別以A、B、C為圓心,AC、BA1CA2為半徑畫的弧,曲線CA1A2A3稱為螺旋線旋轉(zhuǎn)一圈.然后又以A為圓心AA3為半徑畫弧,這樣畫到第n圈,則所得螺旋線的長(zhǎng)度_____________.(用π表示即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列, 
(1) 求的通項(xiàng)公式;
(2) 令,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.已知二次函數(shù)經(jīng)過點(diǎn)(0,10),其導(dǎo)數(shù),當(dāng))時(shí),是整數(shù)的個(gè)數(shù)記為。
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前n項(xiàng)()項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)于任意的正整數(shù)n都有等式成立. (1)求數(shù)列{an}的通項(xiàng)公式; (2)令數(shù)列(其中c為正實(shí)數(shù)),Tn為數(shù)列{bn}的前n項(xiàng)和,若Tn>8對(duì)nN*恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題





(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)的前n項(xiàng)和為,試問當(dāng)n為何值時(shí),最大?并求出的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)等差數(shù)列的前項(xiàng)和為,已知,則
等差數(shù)列的公差d=      .

查看答案和解析>>

同步練習(xí)冊(cè)答案