20.已知雙曲線x2-my2=1的離心率為3,則其漸近線與圓(x-3)2+y2=7的位置關(guān)系為( 。
A.相交B.相離C.相切D.無法判斷

分析 由離心率公式和a,b,c的關(guān)系可得b與a的關(guān)系,可得漸近線方程,由圓心D(3,0)到漸近線的距離,即可得到漸近線與圓的位置關(guān)系.

解答 解:由e=3,即c2=9a2,即a2+b2=9a2,即有b=2$\sqrt{2}$a,
則雙曲線的漸近線方程為y=$±2\sqrt{2}$x,
圓心D(3,0)到漸近線的距離為d=$\frac{|6\sqrt{2}|}{\sqrt{1+({2\sqrt{2})}^{2}}}$=2$\sqrt{2}$$>\sqrt{7}$.
則有漸近線與圓D相離.
故選:B.

點(diǎn)評(píng) 本題考查雙曲線的方程和性質(zhì),主要考查漸近線方程和離心率的運(yùn)用,同時(shí)考查直線和圓的位置關(guān)系的判斷方法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.若f(α)=2tanα-$\frac{2si{n}^{2}\frac{α}{2}-1}{sin\frac{α}{2}cos\frac{α}{2}}$,則f($\frac{π}{12}$)的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,-2≤x≤-1}\\{ln(x+2),-1<x≤2}\end{array}\right.$,若g(x)=f(x)-a(x+2)的圖象與x軸有3個(gè)不同的交點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(0,$\frac{1}{e}$)B.(0,$\frac{1}{3e}$)C.[$\frac{ln2}{2}$,$\frac{1}{e}$)D.[$\frac{2ln2}{3}$,$\frac{1}{3e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線與圓(x-2)2+y2=3相切,則雙曲線的離心率為( 。
A.$\frac{2\sqrt{2}}{3}$B.$\frac{\sqrt{7}}{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-lnx,0<x<1}\\{lnx,x≥1}\end{array}\right.$,若f(a)=f(b)(a≠b),則函數(shù)g(x)=$\left\{\begin{array}{l}{{x}^{2}+2a+4,x≤0}\\{\frac{a{x}^{2}+b}{x},x>0}\end{array}\right.$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=($\frac{1}{3}$)x+x-5的零點(diǎn)為x1、x2,函數(shù)g(x)=log${\;}_{\frac{1}{3}}$x+x-5的零點(diǎn)為x3、x4,則x1+x2+x3+x4的值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.執(zhí)行如圖的程序框圖(N∈N*),那么輸出的p是( 。
A.$A_{N+3}^{N+3}$B.$A_{N+2}^{N+2}$C.$A_{N+1}^{N+1}$D.$A_N^N$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知等差數(shù)列{an}的前n項(xiàng)和Sn滿足S3=0,S5=5,則an=( 。
A.2-nB.n-2C.-2-nD.n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在某班級(jí)舉行的“元旦聯(lián)歡會(huì)”有獎(jiǎng)答題活動(dòng)中,主持人準(zhǔn)備了A,B兩個(gè)問題,規(guī)定:被抽簽抽到的答題同學(xué),答對(duì)問題A可獲得100分,答對(duì)問題B可獲得200分,答題結(jié)果相互獨(dú)立互不影響,先回答哪個(gè)問題由答題同學(xué)自主決定;但只有第一個(gè)問題答對(duì)才能答第二個(gè)問題,否則終止答題.答題終止后,獲得的總分決定獲獎(jiǎng)的等次.若甲是被抽到的答題同學(xué),且假設(shè)甲答對(duì)A,B問題的概率分別為$\frac{1}{2},\frac{1}{4}$.
(Ⅰ)記甲先回答問題A再回答問題B得分為隨機(jī)變量ξ,求ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)你覺得應(yīng)先回答哪個(gè)問題才能使甲的得分期望更高?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案