8.圓O的半徑為3,一條弦AB=4,P為圓O上任意一點(diǎn),則$\overrightarrow{AB}$•$\overrightarrow{BP}$的取值范圍為( 。
A.[-16,0]B.[0,16]C.[-4,20]D.[-20,4]

分析 如圖所示,連接OA,OB.過(guò)點(diǎn)O作OC⊥AB,垂足為C.利用垂徑定理可得BC=$\frac{1}{2}$AB=2.可得cos∠OBA.利用向量的三角形法則,可得$\overrightarrow{AB}$•$\overrightarrow{BP}$=$\overrightarrow{AB}•(\overrightarrow{OP}-\overrightarrow{OB})$=$\overrightarrow{AB}•\overrightarrow{OP}-\overrightarrow{AB}•\overrightarrow{OB}$,代入數(shù)量積即可得出$\overrightarrow{AB}$•$\overrightarrow{BP}$的取值范圍.

解答 解:如圖所示,連接OA,OB.
過(guò)點(diǎn)O作OC⊥AB,垂足為C.
則BC=$\frac{1}{2}$AB=2.
∴cos∠OBA=$\frac{2}{3}$.
∴$\overrightarrow{AB}$•$\overrightarrow{BP}$=$\overrightarrow{AB}•(\overrightarrow{OP}-\overrightarrow{OB})$=$\overrightarrow{AB}•\overrightarrow{OP}-\overrightarrow{AB}•\overrightarrow{OB}$
=$|\overrightarrow{AB}||\overrightarrow{OP}|•cos<\overrightarrow{AB},\overrightarrow{OP}>$$-|\overrightarrow{AB}||\overrightarrow{OB}|•cos∠OBA$.
=$4×3×cos<\overrightarrow{AB},\overrightarrow{OP}>-4×3×\frac{2}{3}$=$12cos<\overrightarrow{AB},\overrightarrow{OP}>-8$.
∵cos$<\overrightarrow{AB},\overrightarrow{OP}>$∈[-1,1],
∴12cos$<\overrightarrow{AB},\overrightarrow{OP}>$-8∈[-20,4].
故選:D.

點(diǎn)評(píng) 本題考查了向量的數(shù)量積運(yùn)算、垂徑定理、向量共線定理,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.同時(shí)拋擲兩個(gè)骰子(各個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6),則向上的數(shù)之積為偶數(shù)的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在黨的群眾交流路線總結(jié)階段,一督導(dǎo)組從某單位隨機(jī)抽調(diào)25名員工,讓他們對(duì)單位的各項(xiàng)開(kāi)展公國(guó)進(jìn)行打分評(píng)價(jià),現(xiàn)獲得如下數(shù)據(jù):70,82,81,76,84,77,77,65,85,69,83,71,76,89,74,73,83,78,82,72,86,79,76
(1)根據(jù)上述數(shù)據(jù)完成樣本的頻率分布表;
分組頻數(shù)頻率
[65,70]30.12
(70,75]50.20
(75,80]80.32
(80,85]70.28
(85,90]20.08
(2)根據(jù)(1)的頻率分布表,完成樣本頻率分布直方圖
(3)從區(qū)間[65,70]和(85,90]中任意抽取兩個(gè)評(píng)分,求兩個(gè)評(píng)分來(lái)自不同區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知α,β是兩個(gè)不同平面,給出下列四個(gè)條件:
①存在一條直線a,a⊥α,a⊥β;
②存在一個(gè)平面γ,γ⊥α,γ⊥β;
③存在兩條平行直線a,b,a∥α,b∥β,a∥β,b∥α;
④存在兩條異面直線a,b,a?α,b?β,a∥β,b∥α.
其中可以推出α∥β的是(  )
A.①③B.①④C.②④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若函數(shù)y=lg(ax2-ax+1)的值域?yàn)镽,則實(shí)數(shù)a的取值范圍是[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,(a>0,b>0)的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)A在雙曲線第一象限的圖象上,△AF1F2的面積為1,且sin∠A F1F2=$\frac{1}{\sqrt{5}}$,cos∠F1AF2=$\frac{4}{5}$
(1)求雙曲線的方程
(2)已知直線y=kx+1與雙曲線相交于不同兩點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.執(zhí)行如圖所示的程序框圖,則輸出的i=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知球O的表面積是36π,A,B是球面上的兩點(diǎn),∠AOB=60°,C時(shí)球面上的動(dòng)點(diǎn),則四面體OABC體積V的最大值為$\frac{9\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=cosα\\ y=sinα\end{array}\right.$(α為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2的極坐標(biāo)方程為$ρcos({θ-\frac{π}{4}})=-\frac{{\sqrt{2}}}{2}$,曲線C3:ρ=2sinθ.
(1)求曲線C1與曲線C2交點(diǎn)M的直角坐標(biāo);
(2)設(shè)點(diǎn)A,B分別是曲線曲線C2,C3上的動(dòng)點(diǎn),求|AB|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案