分析 (1)根據(jù)不等式的性質(zhì)可判斷出判別式小于或等于0且cosC>0,求得cosC的范圍,進(jìn)而根據(jù)余弦函數(shù)的單調(diào)性求得C的最大值.
(2)根據(jù)(1)中求得C,利用三角形面積公式求得ab的值,進(jìn)而代入余弦定理求得a+b的值.
解答 解:(1)∵不等式x2cosC+4xsinC+6<0的解集是空集.
∴$\left\{\begin{array}{l}{cosC>0}\\{△≤0}\end{array}\right.$,即$\left\{\begin{array}{l}{cosC>0}\\{16si{n}^{2}C-24cosC≤0}\end{array}\right.$,
即$\left\{\begin{array}{l}{cosC>0}\\{cosC≤-2或cosC≥\frac{1}{2}}\end{array}\right.$,
故cosC≥$\frac{1}{2}$,
∴角C的最大值為60°.
(2)當(dāng)C=60°時(shí),S△ABC=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab=$\frac{3\sqrt{3}}{2}$,
∴ab=6,
由余弦定理得c2=a2+b2-2abcosC=(a+b)2-2ab-2abcosC,
∴(a+b)2=c2+3ab=$\frac{121}{4}$,
∴a+b=$\frac{11}{2}$.
點(diǎn)評(píng) 本題主要考查了余弦定理的應(yīng)用,解不等式問(wèn)題.考查了學(xué)生綜合分析問(wèn)題和解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y3>y1>y2 | B. | y2>y1>y3 | C. | y1>y2>y3 | D. | y1>y3>y2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
價(jià) 格x | 1.4 | 1.6 | 1.8 | 2 | 2.2 |
需求量y | 12 | 10 | 7 | 5 | 3 |
n-2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
小概率0.01 | 1.000 | 0.990 | 0.959 | 0.917 | 0.874 | 0.834 | 0.798 | 0.765 | 0.735 | 0.708 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 506 | B. | 462 | C. | 420 | D. | 380 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com