18.求值:$\frac{1-tan15°}{1+tan15°}$=( 。
A.$\frac{1}{2}$B.$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

分析 由條件根據(jù)兩角和的正切公式,求得所給式子的值.

解答 解:$\frac{1-tan15°}{1+tan15°}$=$\frac{tan45°-tan15°}{1+tan45°tan15°}$=tan(45°-15°)=tan30°=$\frac{\sqrt{3}}{3}$.
故選:C.

點評 本題主要考查兩角和的正切函數(shù)公式在三角函數(shù)化簡求值中的應用,考查了轉(zhuǎn)化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.在平面直角坐標系xOy中,已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點為F,上頂點為B,M 為線段BF 的中點,若∠MOF=30°,則該橢圓的離心率為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在等差數(shù)列{an}中,已知a3+a8=6,則3a2+a16的值為( 。
A.24B.18C.16D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)$f(x)=-x+\frac{1}{x}$在$[{-2,-\frac{1}{3}}]$上的最大值是( 。
A.$\frac{3}{2}$B.$-\frac{8}{3}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在等差數(shù)列{an}中,a2=3,a5+a7=10,則a1+a10=(  )
A.9B.9.5C.10D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在△ABC中,角A,B,C的對邊分別為a,b,c,若a2=3b2+3c2-2$\sqrt{3}$bcsinA,則C=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.將函數(shù)f(x)=sin3x+cos3x的圖象沿x軸向左平移∅個單位后,得到一個偶函數(shù)的圖象,則∅的一個可能取值為( 。
A.$\frac{π}{12}$B.$-\frac{π}{12}$C.$\frac{π}{4}$D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=loga(1+x),g(x)=loga(1-x),(a>0,a≠1)
(1)若a=2,且函數(shù)f(x)的定義域為[3,36],求f(x)的最值;
(2)求使f(x)-g(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=|x|+|x+1|.
(1)解關于x的不等式f(x)>3;
(2)若?x∈R,使得m2+3m+2f(x)≥0成立,試求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案