20.直線x+1=0的傾斜角是(  )
A.$\frac{π}{2}$B.$\frac{3π}{4}$C.$-\frac{π}{4}$D.0

分析 設直線x+1=0的傾斜角為θ,θ∈[0,π),由于直線x+1=0與x軸垂直,即可得出.

解答 解:設直線x+1=0的傾斜角為θ,θ∈[0,π),
∵直線x+1=0與x軸垂直,
∴θ=$\frac{π}{2}$.
故選:A.

點評 本題考查了直線的傾斜角與斜率的關系,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.在四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形,且AB=AA1,∠A1AB=∠A1AD=60°.
(Ⅰ)求證:平面A1BD⊥平面A1AC;
(Ⅱ)若BD=$\sqrt{2}{A_1}$D=2,求平面A1BD與平面B1BD所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖,等腰直角三角形ABC中,∠BAC=90°,D為BC的中點,BE平分∠ABC,AD與BE交于點P,若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,則λ等于( 。
A.$\frac{1}{2}$B.$\sqrt{2}$-1C.$\frac{\sqrt{2}-1}{2}$D.$\frac{2-\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距為2,點Q($\frac{a^2}{{\sqrt{{a^2}-{b^2}}}}$,0)在直線l:x=2上.
(1)求橢圓C的標準方程;
(2)若O為坐標原點,P為直線l上一動點,過點P作直線l′與橢圓相切于點A,求△POA面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.數(shù)列{an}的首項a1=1,且滿足對任意的a1=1,都有an+1-an≤2n,an+2-an≥3×2n成立,則a2015=22015-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.(1)求經(jīng)過A(-1,2)且與直線2x-3y+4=0垂直的直線l的方程;
(2)求經(jīng)過A(5,2),B(3,-2)且圓心在直線2x-y-3=0上的圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知-$\frac{π}{2}$<θ<$\frac{π}{2}$,且sinθ+cosθ=$\frac{1}{5}$,則tanθ的值為-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=(x+1)lnx,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知$\overrightarrow a$=(5,3),$\overrightarrow b$=(-2,t),若$\overrightarrow a$與$\overrightarrow b$的夾角為鈍角,則實數(shù)t的取值范圍是(-∞,-$\frac{6}{5}$)∪($-\frac{6}{5}$,$\frac{10}{3}$).

查看答案和解析>>

同步練習冊答案