分析 由an+1-an≤2n,可得-an+1+an≥-2n,又an+2-an≥3×2n,可得an+2-an+1=an+2-an-an+1+an≥2n+1,即an+1-an≥2n,于是an+1-an=2n,再利用“累加求和”方法、等比數(shù)列的求和公式即可得出.
解答 解:∵an+1-an≤2n,∴-an+1+an≥-2n,
又∵an+2-an≥3×2n,
∴an+2-an+1=an+2-an-an+1+an≥3×2n-2n=2n+1,
∴an+1-an≥2n,
又∵an+1-an≤2n,∴an+1-an=2n,
∴a2015=a2015-a2014+a2014-a2013+…+a3-a2+a2-a1+a1
=22014+22013+…+22+2+1
=$\frac{{2}^{2015}-1}{2-1}$
=22015-1.
故答案為:22015-1.
點評 本題考查了數(shù)列的遞推關系、“累加求和”方法、等比數(shù)列的求和公式、不等式性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{3π}{4}$ | C. | $-\frac{π}{4}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}-1$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $\sqrt{2}+1$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com