【題目】如圖,已知,分別是橢圓的左、右焦點,過與軸垂直的直線交橢圓于點,且
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點,問是否存在直線與橢圓交于不同的兩點,,且的垂直平分線恰好過點?若存在,求出直線斜率的取值范圍;若不存在,請說明理由.
【答案】(1);(2).
【解析】
試題(1)直接依據(jù)定義求得橢圓的長軸長,又右焦點為,從而得到其標(biāo)準(zhǔn)方程;(2)本題需分與軸垂直和不垂直兩種情況簡單討論,當(dāng)不垂直時,可設(shè)的方程為,聯(lián)立橢圓方程,轉(zhuǎn)化為一元二次方程方程有兩解問題求得斜率取值范圍.
試題解析:(1) 連接,在中,,,∴
∴ 由橢圓定義可知即,又,從而,
∴ 橢圓的標(biāo)準(zhǔn)方程為.
(2) 由題意可知,若的垂直平分線恰好過點,則有,
當(dāng)與軸垂直時,不滿足;當(dāng)與軸不垂直時,
設(shè)的方程為,由,消得,
∵,
∴,①式
令,,的中點為,則
∴,,
∴, 又∵,
∴即,化簡得,
結(jié)合①式得,即,解之得:,
綜上所述,存在滿足條件的直線,且其斜率的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣a)2+(y﹣2)2=4(a>0)及直線l:x﹣y+3=0.當(dāng)直線l被圓C截得的弦長為時,求
(Ⅰ)a的值;
(Ⅱ)求過點(3,5)并與圓C相切的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①命題“若,則”的否命題為“若,則”;
②“”是“”的必要不充分條件;
③命題“,使得”的否定是:“,均有”;
④命題“若,則”的逆否命題為真命題
其中所有正確命題的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】男運動員名,女運動員名,其中男女隊長各人,選派人外出比賽,在下列情形中各有多少種選派方法.
(1)任選人
(2)男運動員名,女運動員名
(3)至少有名女運動員
(4)隊長至少有一人參加
(5)既要有隊長,又要有女運動員
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知底角為45°的等腰梯形ABCD,底邊BC長為7 cm,腰長為2cm,當(dāng)一條垂直于底邊BC(垂足為F)的直線l從B點開始由左至右移動(與梯形ABCD有公共點)時,直線l把梯形分成兩部分,令BF=x(0≤x≤7),左邊部分的面積為y,求y與x之間的函數(shù)關(guān)系式,畫出程序框圖,并寫出程序.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線與軸所圍成的區(qū)域是一塊等待開墾的土地,現(xiàn)計劃在該區(qū)域內(nèi)圍出一塊矩形地塊ABCD作為工業(yè)用地,其中A、B在拋物線上,C、D在軸上.已知工業(yè)用地每單位面積價值為元,其它的三個邊角地塊每單位面積價值元.
(1)求等待開墾土地的面積;
(2)如何確定點C的位置,才能使得整塊土地總價值最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一藝術(shù)拱門由兩部分組成,下部為矩形,的長分別為和,上部是圓心為的劣弧,.
(1)求圖1中拱門最高點到地面的距離;
(2)現(xiàn)欲以B點為支點將拱門放倒,放倒過程中矩形所在的平面始終與地面垂直,如圖2、圖3、圖4所示.設(shè)與地面水平線所成的角為.記拱門上的點到地面的最大距離為,試用的函數(shù)表示,并求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的參數(shù)方程為 (為參數(shù)),以直角坐標(biāo)系原點為極點,x軸非負(fù)半軸為極軸并取相同的單位長度建立極坐標(biāo)系,
(1)求曲線C的極坐標(biāo)方程,并說明其表示什么軌跡;
(2)若直線l的極坐標(biāo)方程為,求曲線C上的點到直線l的最大距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com