A. | [$\frac{5}{3}$,+∞) | B. | [$\frac{5}{4}$,+∞) | C. | (1,$\frac{5}{3}$] | D. | (1,$\frac{5}{4}$] |
分析 將x=c代入$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1和y=±$\frac{a}$x,求出A,B,C,D的坐標(biāo),由兩點(diǎn)之間的距離公式求得|AB|,|CD|,由|AB|≥$\frac{3}{5}$|CD|,求得a和c的關(guān)系,根據(jù)離心率公式,即可求得離心率的取值范圍.
解答 解:當(dāng)x=c時(shí)代入$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1得y=±$\frac{^{2}}{a}$,則A(c,$\frac{^{2}}{a}$),B(c,-$\frac{^{2}}{a}$),則AB=$\frac{2^{2}}{a}$,
將x=c代入y=±$\frac{a}$x得y=±$\frac{bc}{a}$,則C(c,$\frac{bc}{a}$),D(c,-$\frac{bc}{a}$),
則|CD|=$\frac{2bc}{a}$,
∵|AB|≥$\frac{3}{5}$|CD|
∴$\frac{2^{2}}{a}$≥$\frac{3}{5}$×$\frac{2bc}{a}$,即b≥$\frac{3}{5}$c,
則b2≥$\frac{9}{25}$c2=c2-a2,
即$\frac{16}{25}$c2≥a2,
則e2=$\frac{{c}^{2}}{{a}^{2}}$,則e≥$\frac{5}{4}$,
故選:B.
點(diǎn)評(píng) 本題主要考查雙曲線離心率的計(jì)算,根據(jù)方程求出交點(diǎn)坐標(biāo),結(jié)合距離公式進(jìn)行求解是解決本題的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 5 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{21}{16}$ | B. | $\frac{85}{64}$ | C. | $\frac{63}{32}$ | D. | $\frac{127}{64}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,0} | B. | {0,1} | C. | {-1,0,1} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3≤x≤8,且x∈N | B. | 2≤x≤8,且x∈N | C. | 8≤x≤12,且x∈N | D. | 10≤x≤15,且x∈N |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題p一定是真命題 | B. | 命題q一定是真命題 | ||
C. | 命題q一定是假命題 | D. | 命題p也可以是假命題 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com