9.設(shè)數(shù)列{an}滿足a1=2,a2=6,an+2=2an+1-an+2(n∈N*).
(1)證明:數(shù)列{an+1-an}是等差數(shù)列;
(2)求:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2016}}$.

分析 (1)由an+2=2an+1-an+2,變形為(an+2-an+1)-(an+1-an)=2,a2-a1=4,即可證明.
(2)由(1)可得:an+1-an=4+2(n-1)=2n+2.利用an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1可得an.再利用“裂項求和”方法即可得出.

解答 (1)證明:∵an+2=2an+1-an+2,
∴(an+2-an+1)-(an+1-an)=2,a2-a1=4,
∴數(shù)列{an+1-an}是等差數(shù)列,首項為4,公差為2.
(2)解:由(1)可得:an+1-an=4+2(n-1)=2n+2.
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n+2(n-1)+…+2×2+2=$2×\frac{n(n+1)}{2}$=n2+n.
∴$\frac{1}{{a}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2016}}$=$(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{2016}-\frac{1}{2017})$
=1-$\frac{1}{2017}$
=$\frac{2016}{2017}$.

點評 本題考查了等差數(shù)列的定義通項公式及其求和公式、“累加求和”方法、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow{a}$=(m,cos2x),$\overrightarrow$=(sin2x,1),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,且y=f(x)的圖象過點(${\frac{π}{12}$,$\sqrt{3}}$).
(1)求m的值;
(2)將y=f(x)的圖象向左平移φ(0<φ<π)個單位后得到函數(shù)y=g(x)的圖象,若y=g(x)圖象上各最高點到點(0,3)的距離的最小值為1,求y=g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖為一個觀覽車示意圖.該觀覽車圓半徑為5米,圓上最低點與地面距離為1米,60秒轉(zhuǎn)動一圈.圖中OA與地面垂直.設(shè)從OA開始轉(zhuǎn)動,逆時針轉(zhuǎn)動θ角到OB.設(shè)B點與地面距離為h.
(Ⅰ)當(dāng)θ=150°時,求h的值;
(Ⅱ)若經(jīng)過t秒到達OB,求h與t的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.一個總體中的80個個體編號為0,1,2,…,79,并依次將其分為8個組,組號為0,1,…,9,要用(錯位)系統(tǒng)抽樣的方法抽取一個容量為8的樣本,即規(guī)定先在第1組隨機抽取一個號碼,記為i,依次錯位地得到后面各組的號碼,即第k組中抽取個位數(shù)為i+k(當(dāng)i+k<10)或i+k-10(當(dāng)i+k≥10)的號碼,在i=6時,所抽到的第8組的號碼是74.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}的前n項和為Sn,an=$\frac{1}{(\sqrt{n-1}+\sqrt{n})(\sqrt{n-1}+\sqrt{n+1})(\sqrt{n}+\sqrt{n+1})}$,則S2016=$\frac{1+12\sqrt{14}-\sqrt{2017}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知直線l:x-y-4=0和圓C:x2+y2+2x-2y=0
(1)試判斷直線l與圓C的位置關(guān)系
(2)求與直線l和圓C都相切的半徑最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.長方體ABCD-A1B1C1D1中,已知AA1=3,AB=AD=2,棱AD在平面α內(nèi),則長方體在平面α內(nèi)的射影所構(gòu)成的圖形面積的取值范圍是$4≤S≤2\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某企業(yè)有甲、乙兩個研發(fā)小組,他們研發(fā)一件新產(chǎn)品成功的概率分別為$\frac{3}{4}$和$\frac{2}{3}$,本年度計劃研發(fā)的新產(chǎn)品件數(shù)分別為2件和1件.設(shè)甲、乙兩組的每次研發(fā)均相互獨立.
(1)求該企業(yè)本年度至少有一件新產(chǎn)品研發(fā)成功的概率;
(2)已知研發(fā)一件新產(chǎn)品的成本為10百萬元,成功研發(fā)一件新產(chǎn)品可獲得50百萬元的銷售額,求該企業(yè)本年度在這3件新產(chǎn)品上獲得的利潤X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,若圓x2+y2=a2被直線x-y-$\sqrt{2}$=0截得的弦長為2
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點A、B為動直線y=k(x-1),k≠0與橢圓C的兩個交點,問:在x軸上是否存在定點M,使得$\overrightarrow{MA}$•$\overrightarrow{MB}$為定值?若存在,試求出點M的坐標(biāo)和定值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案