18.已知多項(xiàng)式函數(shù)f(x)=2x5-5x4-4x3+3x2-6x+7,當(dāng)x=5時(shí)利用秦九韶算法可得v2=21.

分析 由秦九韶算法可得:f(x)=2x5-5x4-4x3+3x2-6x+7=((((2x-5)x-4)x+3)x-6)x+7,即可得出.

解答 解:f(x)=2x5-5x4-4x3+3x2-6x+7=((((2x-5)x-4)x+3)x-6)x+7,
當(dāng)x=5時(shí)利用秦九韶算法可得:
v0=2,
v1=2×5-5=5,
v2=5×5-4=21.
故答案為:21.

點(diǎn)評(píng) 本題考查了秦九韶算法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)數(shù)列{an}的前項(xiàng)和為Sn,若點(diǎn)An(n,$\frac{S_n}{n}}$)在函數(shù)f(x)=-x+c的圖象上運(yùn)動(dòng),其中c是與x無(wú)關(guān)的常數(shù)且a1=3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=tanan+1•tanan,tan195+tan3=atan2,求數(shù)列{bn}的前99項(xiàng)和(用含a的式子表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知x,y的取值如表所示:若y與x線性相關(guān),且$\hat y=0.95x+2.6$,則a=4.3.
x0134
y2.2a4.86.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.用秦九韶算法計(jì)算多項(xiàng)式f(x)=5x5+4x4+3x3+2x2+x+1,求當(dāng)x=3時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.等比數(shù)列{an}的前n項(xiàng)和Sn=2n+6-a,數(shù)列{bn}滿足bn=$\frac{1}{n}(log_2{a_1}+log_2{a_2}+…+log_2{a_n})$(n∈N*).
(1)求a的值及{an}的通項(xiàng)公式;
(2)求數(shù)列$\left\{{\frac{1}{{{b_n}•{b_{n+1}}}}}\right\}$的前n項(xiàng)和;
(3)求數(shù)列$\left\{{\frac{a_n}{b_n}}\right\}$的最小項(xiàng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知變量x和y滿足關(guān)系y=-0.2x+3,變量y與z負(fù)相關(guān).下列結(jié)論中正確的是( 。
A.x與y負(fù)相關(guān),x與z負(fù)相關(guān)B.x與y正相關(guān),x與z正相關(guān)
C.x與y正相關(guān),x與z負(fù)相關(guān)D.x與y負(fù)相關(guān),x與z正相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.過(guò)拋物線E:y2=4x的焦點(diǎn)F作兩條互相垂直的弦AB,CD,若AB,CD的中點(diǎn)分別為M,N,則△FMN面積的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.給出下列命題:
①函數(shù)y=sin($\frac{5}{2}$π-x)是偶函數(shù);
②方程lgx=sinx有兩個(gè)不等的實(shí)根;
③點(diǎn)($\frac{π}{3}$,0)是函數(shù)f(x)=sin(2x+$\frac{π}{3}$)是的一個(gè)對(duì)稱中心
④設(shè)A、B、C∈(0,$\frac{π}{2}$),且sinA-sinC=sinB,cosA+cosC=cosB,則B-A等于-$\frac{π}{3}$;
以上命題中正確的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知等比數(shù)列{an}滿足a1=2,a1+a3+a5=14,則$\frac{1}{a_1}$+$\frac{1}{a_3}$+$\frac{1}{a_5}$=( 。
A.$\frac{7}{8}$B.$\frac{7}{4}$C.$\frac{13}{9}$D.$\frac{13}{18}$

查看答案和解析>>

同步練習(xí)冊(cè)答案