7.若三棱錐P-ABC中,AB=AC=1,AB⊥AC,PA⊥平面ABC,且直線PA與平面PBC所成角的正切值為$\frac{1}{2}$,則三棱錐P-ABC的外接球的體積為( 。
A.$\frac{4π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{4}$

分析 利用AB=AC=1,AB⊥AC,PA⊥平面ABC,且直線PA與平面PBC所成角的正切值為$\frac{1}{2}$,求出PA=$\sqrt{2}$,三棱錐P-ABC擴(kuò)充為長(zhǎng)方體,則長(zhǎng)方體的對(duì)角線長(zhǎng)為$\sqrt{2+1+1}$=2,可得三棱錐P-ABC的外接球的半徑為1,即可得出結(jié)論.

解答 解:∵AB=AC=1,AB⊥AC,PA⊥平面ABC,且直線PA與平面PBC所成角的正切值為$\frac{1}{2}$,
∴PA=$\sqrt{2}$,
三棱錐P-ABC擴(kuò)充為長(zhǎng)方體,則長(zhǎng)方體的對(duì)角線長(zhǎng)為$\sqrt{2+1+1}$=2,
∴三棱錐P-ABC的外接球的半徑為1,
∴三棱錐P-ABC的外接球的體積為$\frac{4π}{3}$,
故選A.

點(diǎn)評(píng) 本題考查三棱錐P-ABC的外接球的體積,考查線面垂直,線面角,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{5}}{3}$,橢圓上一點(diǎn)P到兩焦點(diǎn)距離之和為12,則橢圓短軸長(zhǎng)為(  )
A.8B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,BC=7,AC=6,cosC=$\frac{{2\sqrt{6}}}{7}$.若動(dòng)點(diǎn)P滿足$\overrightarrow{AP}$=(1-λ)$\overrightarrow{AB}$+$\frac{2λ}{3}$$\overrightarrow{AC}$,(λ∈R),則點(diǎn)P的軌跡與直線BC,AC所圍成的封閉區(qū)域的面積為( 。
A.5B.10C.2$\sqrt{6}$D.4$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=Asin(ωx+φ)+b($A>0,ω>0,|φ|<\frac{π}{2}$)的圖象上相鄰的一個(gè)最大值點(diǎn)與對(duì)稱中心分別為($\frac{π}{18}$,3)、$(\frac{2π}{9},0)$,則函數(shù)f(x)的單調(diào)增區(qū)間為( 。
A.($\frac{2kπ}{3}-\frac{π}{9}$,$\frac{2kπ}{3}+\frac{2π}{9}$),k∈ZB.($\frac{2kπ}{3}$-$\frac{4π}{9}$,$\frac{2kπ}{3}$-$\frac{π}{9}$),k∈Z
C.($\frac{2kπ}{3}$+$\frac{π}{18}$,$\frac{2kπ}{3}$+$\frac{7π}{18}$),k∈ZD.($\frac{2kπ}{3}$-$\frac{7π}{18}$,$\frac{2kπ}{3}-\frac{π}{18}$),k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=-\frac{1}{a}+\frac{2}{x}(x>0)$
(1)判斷f(x)在(0,+∞)上的增減性,并證明你的結(jié)論    
(2)解關(guān)于x的不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.心理健康教育老師對(duì)某班50個(gè)學(xué)生進(jìn)行了心里健康測(cè)評(píng),測(cè)評(píng)成績(jī)滿分為100分.成績(jī)出來后,老師對(duì)每個(gè)成績(jī)段的人數(shù)進(jìn)行了統(tǒng)計(jì),并得到如圖4所示的頻率分布直方圖.
(1)求a,并從頻率分布直方圖中求出成績(jī)的眾數(shù)和中位數(shù);
(2)若老師從60分以下的人中選兩個(gè)出來與之聊天,則這兩人一個(gè)在(40,50]這一段,另一個(gè)在(50,60]這一段的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,如果a:b:c=2:$\sqrt{6}$:($\sqrt{3}$+1),則△ABC最小角為( 。
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在某校趣味運(yùn)動(dòng)會(huì)的頒獎(jiǎng)儀式上,為了活躍氣氛,大會(huì)組委會(huì)決定在頒獎(jiǎng)過程中進(jìn)行抽獎(jiǎng)活動(dòng),用分層抽樣的方法從參加頒獎(jiǎng)儀式的高一、高二、高三代表隊(duì)中抽取20人前排就座,其中高二代表隊(duì)有5人.
(1)把在前排就座的高二代表隊(duì)5人分別記為a,b,c,d,e,現(xiàn)從中隨機(jī)抽取3人上臺(tái)抽獎(jiǎng),求a和b至少有一人上臺(tái)抽獎(jiǎng)的概率;
(2)抽獎(jiǎng)活動(dòng)的規(guī)則是:代表通過操作按鍵使電腦自動(dòng)產(chǎn)生兩個(gè)[0,1]之間的隨機(jī)數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎(jiǎng)”,則該代表中獎(jiǎng);若電腦顯示“謝謝”,則不中獎(jiǎng).求該代表中獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知x,y∈R且2x+2y=1,則x+y的取值范圍為(-∞,-2].

查看答案和解析>>

同步練習(xí)冊(cè)答案