14.已知函數(shù)f(x)=(2x2-x-1)ex,則方程e[f(x)]2+tf(x)-9$\sqrt{e}$=0(t∈R)的根的個(gè)數(shù)為(  )
A.2B.3C.4D.5

分析 作出函數(shù)f(x)的大致圖象,分析關(guān)于f(x)這一整體的二次方程根的情況,依據(jù)根的情況分類(lèi)討論.

解答 解:∵函數(shù)f(x)=(2x2-x-1)ex,∴f′(x)=(2x-1)(x+2)ex
且f(-2)=$\frac{9}{{e}^{2}}$,f($\frac{1}{2}$)=-$\sqrt{e}$,
f(x)的大致圖象如圖,

令t=f(x),
設(shè)方程e[f(x)]2+tf(x)-9$\sqrt{e}$=0的兩根為m1,m2,
則m1m2=-$\frac{9\sqrt{e}}{e}$=f(-2)f($\frac{1}{2}$),
若m1=$\frac{9}{{e}^{2}}$,m2=-$\sqrt{e}$,有三根;
若0<m1<$\frac{9}{{e}^{2}}$有三根,此時(shí)m2<-$\sqrt{e}$無(wú)根,也有三根,
當(dāng)m1>$\frac{9}{{e}^{2}}$有1根,此時(shí)-$\sqrt{e}$<m2<0有兩根,也有三根,
故選:B.

點(diǎn)評(píng) 考查利用導(dǎo)函數(shù)分析出的單調(diào)性、極值作簡(jiǎn)圖,考查復(fù)合函數(shù)的零點(diǎn)問(wèn)題.利用換元法簡(jiǎn)化方程,考查數(shù)形結(jié)合.作圖、分析根個(gè)數(shù),難度較大,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.作出下列函數(shù)的圖象,并根據(jù)圖象指出函數(shù)的值域.
(1)y=$\frac{x|1-x|}{1{-x}^{2}}$;
(2)y=$\frac{{e}^{x}}{x-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,橢圓C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,x軸被曲線(xiàn)C2:y=x2-b截得的線(xiàn)段長(zhǎng)等于C1的長(zhǎng)半軸長(zhǎng).
(1)求C1的方程;
(2)設(shè)C2與y軸的交點(diǎn)為M,過(guò)坐標(biāo)原點(diǎn)O的直線(xiàn)l與C2相交于點(diǎn)A、B,直線(xiàn)MA,MB分別與C1相交于D,E
(i)證明:MD⊥ME
(ii)記△MAB,△MDE的面積分別是S1,S2.問(wèn):是否存在直線(xiàn)l,使得$\frac{{S}_{1}}{{S}_{2}}$=$\frac{17}{23}$?若存在,求出直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,利用定義法證明f(x)在R上是單調(diào)遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知圓C經(jīng)過(guò)三點(diǎn)A1(-2,0),A2(2,0),A3(1,$\sqrt{3}$).
(I)求圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)M(-3,0)作直線(xiàn)l交圓C于P、Q兩點(diǎn),點(diǎn)N(1,0)為圓C內(nèi)一點(diǎn),求△PQN面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.執(zhí)行如圖的程序框圖,若輸入的a,b分別為78,182,則輸出的a=( 。
A.0B.2C.13D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)Sn表示數(shù)列{an}的前n項(xiàng)和,已知$\frac{{S}_{5}}{{S}_{10}}$=$\frac{1}{3}$,若{an}是等比數(shù)列,則公比q=$\root{5}{2}$;若{an}是等差數(shù)列,則$\frac{{S}_{10}}{{S}_{20}}$=$\frac{3}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=$\frac{\sqrt{1+{x}^{2}}+x-1}{\sqrt{1+{x}^{2}}+x+1}$是(  )
A.非奇非偶函數(shù)
B.既不是奇函數(shù),又不是偶函數(shù)奇函數(shù)
C.偶函數(shù)
D.奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在某次電影展映活動(dòng)中,展映的影片有科幻片和文藝片兩種類(lèi)型,統(tǒng)計(jì)一隨機(jī)抽樣調(diào)查的樣本數(shù)據(jù)顯示,100名男性觀(guān)眾中選擇科幻片的有60名,女性觀(guān)眾中有$\frac{2}{3}$的選擇文藝片,選擇文藝片的觀(guān)眾中男性觀(guān)眾和女性觀(guān)眾一樣多.
(1)根據(jù)以上數(shù)據(jù)完成下列2×2列聯(lián)表:
科幻片文藝片總計(jì)
總計(jì)
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為選擇影片類(lèi)型與性別有關(guān)?
附:
P(K2≥k00.100.050.0250.0100.001
K02.7063.8415.0246.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案