5.∫${\;}_{-1}^{1}$($\sqrt{1{-x}^{2}}$+x3)dx=$\frac{π}{2}$.

分析 由題意可得∫${\;}_{-1}^{1}$($\sqrt{1{-x}^{2}}$+x3)dx=∫${\;}_{-1}^{1}$$\sqrt{1{-x}^{2}}$dx+∫${\;}_{-1}^{1}$x3dx,分別由定積分的幾何意義和牛頓-萊布尼茲公式可得.

解答 解:∫${\;}_{-1}^{1}$($\sqrt{1{-x}^{2}}$+x3)dx=∫${\;}_{-1}^{1}$$\sqrt{1{-x}^{2}}$dx+∫${\;}_{-1}^{1}$x3dx,
∵∫${\;}_{-1}^{1}$$\sqrt{1{-x}^{2}}$dx表示單位圓x2+y2=1的上半個(gè)圓的面積,
∴∫${\;}_{-1}^{1}$$\sqrt{1{-x}^{2}}$dx=$\frac{π}{2}$,又∫${\;}_{-1}^{1}$x3dx=$\frac{1}{4}$x4${|}_{-1}^{1}$=0,
∴∫${\;}_{-1}^{1}$($\sqrt{1{-x}^{2}}$+x3)dx=$\frac{π}{2}$,
故答案為:$\frac{π}{2}$.

點(diǎn)評(píng) 本題考查定積分的求解,涉及定積分的幾何意義和公式求解,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若等差數(shù)列{an}滿足a8+a9+a10>0,a9+a10<0,則當(dāng)n=( 。⿻r(shí),{an}的前n項(xiàng)和最大.
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,底面四邊形ABCD內(nèi)接于圓O,AC是圓O的一條直徑,PA⊥平面ABCD,PA=AC=2,E是PC的中點(diǎn),∠DAC=∠AOB
(1)求證:BE∥平面PAD;
(2)若二面角P-CD-A的正切值為2,求直線PB與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知cosx-sinx=$\frac{3\sqrt{2}}{5}$,$\frac{5π}{4}$<x<$\frac{7π}{4}$
(1)求sinx+cosx的值;
(2)求$\frac{sin2x-2si{n}^{2}x}{1+tanx}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.曲線y=x3-$\sqrt{3}x$+2上的任意一點(diǎn)P處切線的傾斜角的取值范圍是( 。
A.[$\frac{π}{3}$,$\frac{π}{2}$)B.[$\frac{2π}{3}$,π)C.[0,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{2π}{3}$]D.[0,$\frac{π}{2}$)∪[$\frac{2π}{3}$,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若角θ滿足sinθ<0且cosθ>0,則角θ在第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.為了得到函數(shù)y=lg$\frac{x+3}{10}$的圖象,只需把函數(shù)y=lgx的圖象上所有的點(diǎn)( 。
A.向左平移3,向上平移1個(gè)單位B.向右平移3,向上平移1個(gè)單位
C.向左平移3,向下平移1個(gè)單位D.向右平移3,向下平移1個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,四棱錐S-ABCD的底面是正方形,SA⊥底面ABCD,E是SC中點(diǎn),SA=4,AB=2.
(1)求三棱錐A-SBD的體積
(2)求四棱錐E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在銳角三角形△ABC中,已知a=6,c=2$\sqrt{3}$,△ABC的面積為3$\sqrt{3}$,則∠B=$\frac{π}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案