分析 由題意可得∫${\;}_{-1}^{1}$($\sqrt{1{-x}^{2}}$+x3)dx=∫${\;}_{-1}^{1}$$\sqrt{1{-x}^{2}}$dx+∫${\;}_{-1}^{1}$x3dx,分別由定積分的幾何意義和牛頓-萊布尼茲公式可得.
解答 解:∫${\;}_{-1}^{1}$($\sqrt{1{-x}^{2}}$+x3)dx=∫${\;}_{-1}^{1}$$\sqrt{1{-x}^{2}}$dx+∫${\;}_{-1}^{1}$x3dx,
∵∫${\;}_{-1}^{1}$$\sqrt{1{-x}^{2}}$dx表示單位圓x2+y2=1的上半個(gè)圓的面積,
∴∫${\;}_{-1}^{1}$$\sqrt{1{-x}^{2}}$dx=$\frac{π}{2}$,又∫${\;}_{-1}^{1}$x3dx=$\frac{1}{4}$x4${|}_{-1}^{1}$=0,
∴∫${\;}_{-1}^{1}$($\sqrt{1{-x}^{2}}$+x3)dx=$\frac{π}{2}$,
故答案為:$\frac{π}{2}$.
點(diǎn)評(píng) 本題考查定積分的求解,涉及定積分的幾何意義和公式求解,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{π}{3}$,$\frac{π}{2}$) | B. | [$\frac{2π}{3}$,π) | C. | [0,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{2π}{3}$] | D. | [0,$\frac{π}{2}$)∪[$\frac{2π}{3}$,π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移3,向上平移1個(gè)單位 | B. | 向右平移3,向上平移1個(gè)單位 | ||
C. | 向左平移3,向下平移1個(gè)單位 | D. | 向右平移3,向下平移1個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com