10.設(shè)a,b分別是先后拋擲一枚質(zhì)地均勻的骰子得到的點(diǎn)數(shù),則事件“方程x2+ax+b=0有兩個(gè)不等實(shí)根”的概率是(  )
A.$\frac{19}{36}$B.$\frac{17}{36}$C.$\frac{1}{2}$D.$\frac{15}{36}$

分析 先求出基本事件總數(shù)n=6×6,由事件“方程x2+ax+b=0有兩個(gè)不等實(shí)根”,得△=a2-4b>0,利用列舉法求出其包含的基本事件個(gè)數(shù),由此能求出事件“方程x2+ax+b=0有兩個(gè)不等實(shí)根”的概率.

解答 解:∵a,b分別是先后拋擲一枚質(zhì)地均勻的骰子得到的點(diǎn)數(shù),
∴基本事件總數(shù)n=6×6=36,
∵事件“方程x2+ax+b=0有兩個(gè)不等實(shí)根”,
∴△=a2-4b>0,其包含的基本事件有:
(3,1),(4,1),(5,1),(6,1),(3,2),(4,2),(5,2),(6,2),(4,3),(5,3),(6,3),(5,4),(6,4),(5,5),(6,5),(5,6),(6,6),共有m=17個(gè),
∴事件“方程x2+ax+b=0有兩個(gè)不等實(shí)根”的概率:
p=$\frac{m}{n}$=$\frac{17}{36}$.
故選:B.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.從1,2,3,4,5中任取兩個(gè)數(shù),則這兩個(gè)數(shù)的乘積為偶數(shù)的概率為( 。
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{3}{5}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在△ABC中,$sinA=\frac{1}{3}$,$cosB=\frac{{\sqrt{3}}}{3}$,a=1,則b=$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若將(x+y+z)10展開(kāi)為多項(xiàng)式,經(jīng)過(guò)合并同類項(xiàng)后它的項(xiàng)數(shù)為( 。
A.11B.33C.66D.91

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)$\overrightarrow a=\overrightarrow{e_1}+2\overrightarrow{e_2},\overrightarrow b=-3\overrightarrow{e_1}+2\overrightarrow{e_2}$,其中$\overrightarrow{e_1}⊥\overrightarrow{e_2}$且${\overrightarrow{{e}_{1}}}^{2}$=${\overrightarrow{{e}_{2}}}^{2}$=1
(1)計(jì)算$|{\overrightarrow a+\overrightarrow b}|$的值;
(2)當(dāng)k為何值時(shí),$k\overrightarrow a+\overrightarrow b$與$\overrightarrow a-3\overrightarrow b$互相垂直?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列說(shuō)法正確的是( 。
A.共線向量的方向相同B.零向量是$\overrightarrow{0}$
C.長(zhǎng)度相等的向量叫做相等向量D.共線向量是在一條直線上的向量

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c且有20a$\overrightarrow{BC}$+15b$\overrightarrow{CA}$+12c$\overrightarrow{AB}$=$\overrightarrow{0}$,則△ABC的形狀為( 。
A.銳角三角形B.鈍角三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=-x3+2ax2-x-3在R上是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-$\frac{\sqrt{3}}{2}$]∪[$\frac{\sqrt{3}}{2}$,+∞)B.[-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$]C.(-∞,-$\frac{\sqrt{3}}{2}$]∪($\frac{\sqrt{3}}{2}$,+∞)D.(-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知一個(gè)球的表面積為π,則其體積為(  )
A.$\frac{4π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案