【題目】為比較甲、乙兩地某月14時的氣溫情況,隨機選取該月中的5天,將這5天中14時的氣溫數(shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:

①甲地該月14時的平均氣溫低于乙地該月14時的平均氣溫;

②甲地該月14時的平均氣溫高于乙地該月14時的平均氣溫;

③甲地該月14時的平均氣溫的標準差小于乙地該月14時的平均氣溫的標準差;

④甲地該月14時的平均氣溫的標準差大于乙地該月14時的平均氣溫的標準差,

其中根據(jù)莖葉圖能得到的統(tǒng)計結(jié)論的編號為(

A.①③B.①④C.②③D.②④

【答案】B

【解析】

根據(jù)莖葉圖可以求出甲、乙的這5天中14時的氣溫的平均值以及標準差,最后選出正確答案.

根據(jù)莖葉圖可知:甲、乙的這5天中14時的氣溫的平均值如下:

,,

根據(jù)莖葉圖可知:甲、乙的這5天中14時的氣溫的方差如下:

,

.

故選:B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點P到兩點(0),(0,),的距離之和等于4,設點P的軌跡為C

1)求C的方程.

2)設直線C交于A,B兩點,求弦長|AB|,并判斷OAOB是否垂直,若垂直,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓C:的焦點為F1(–10),

F21,0).過F2x軸的垂線l,在x軸的上方,l與圓F2:交于點A,與橢圓C交于點D.連結(jié)AF1并延長交圓F2于點B,連結(jié)BF2交橢圓C于點E,連結(jié)DF1.已知DF1=

1)求橢圓C的標準方程;

2)求點E的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我們稱滿足以下兩個條件的有窮數(shù)列階“期待數(shù)列”;①;②.

(1)若數(shù)列的通項公式是,試判斷數(shù)列是否為2014階“期待數(shù)列”,并說明理由;

(2)若等比數(shù)列階“期待數(shù)列”,求公比及數(shù)列的通項公式;

(3)若一個等差數(shù)列既是()階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,已知橢圓,拋物線的焦點的一個頂點,設上的動點,且位于第一象限,記在點處的切線為.

1)求的值和切線的方程(用表示)

2)設交于不同的兩點,線段的中點為,直線與過且垂直于軸的直線交于點.

i)求證:點在定直線上;

ii)設軸交于點,記的面積為,的面積為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐PABCD中,ADBC,平面PAC⊥平面ABCDAB=AD=DC=1,

ABC=DCB=60,EPC上一點.

Ⅰ)證明:平面EAB⊥平面PAC;

Ⅱ)若△PAC是正三角形,EPC中點求三棱錐AEBC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知圓心在軸上,半徑為2的圓位于軸右側(cè),且與直線相切.

(1)求圓的方程;

(2)在圓上,是否存在點,使得直線與圓相交于不同的兩點,且的面積最大?若存在,求出點的坐標及對應的的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線的焦點為F,圓,點為拋物線上一動點.已知當的面積為.

(I)求拋物線方程;

(II)若,過P做圓C的兩條切線分別交y軸于M,N兩點,求面積的最小值,并求出此時P點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱柱的底面ABCD為矩形,AB=1,AD=2,,則的長為( )

A. B.  C.    D.

查看答案和解析>>

同步練習冊答案