【題目】如圖,拋物線的焦點為,拋物線兩點,在拋物線的準線上的射影分別為.

(1)如圖,若點在線段上,過的平行線與拋物線準線交于,證明:的中點;

(2)如圖,若的面積是的面積的兩倍,求中點的軌跡方程.

【答案】(1)見解析;(2).

【解析】

(1) 設(shè)直線,與拋物線方程聯(lián)立可得,∴.

于是,直線,設(shè)直線交于點,令.

易得

(2)設(shè)軸的焦點分別為,,的面積是的面積的兩倍,,所以點. 可設(shè)直線,與拋物線方程聯(lián)立可得,從而可得

,即所求軌跡方程.

(1)由題,,準線.

設(shè)直線,,.

聯(lián)立,∴.

于是,直線,

設(shè)直線交于點,令.

.

故直線經(jīng)過的中點.

(2)設(shè)軸的焦點分別為

,

的面積是的面積的兩倍,

,所以點.

可設(shè)直線,,中點

,

.

于是,

,

中點的軌跡方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域為,對于任意的,都有且當(dāng)時,,若.

(1)求證:為奇函數(shù);

(2)求證: 上的減函數(shù);

(3)求函數(shù)在區(qū)間[-2,4]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,直線的普通方程為,曲線的參數(shù)方程為為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標系.

(Ⅰ)求直線的參數(shù)方程和極坐標方程;

(Ⅱ)設(shè)直線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是偶函數(shù),

(1) 求的值;

(2)當(dāng)時,設(shè),若函數(shù)的圖象有且只有一個公共點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為豐富市民的文化生活,市政府計劃在一塊半徑為200m,圓心角為的扇形地上建造市民廣場,規(guī)劃設(shè)計如圖:內(nèi)接梯形區(qū)域為運動休閑區(qū),其中A,B分別在半徑,上,C,D在圓弧上,

;上,;區(qū)域為文化展區(qū),長為,其余空地為綠化區(qū)域,且長不得超過200m.

(1)試確定A,B的位置,使的周長最大?

(2)當(dāng)的周長最長時,設(shè),試將運動休閑區(qū)的面積S表示為的函數(shù),并求出S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓C:的左、右焦點分別為、,上頂點為A,在x軸負半軸上有一點B,滿足為線段的中點,且AB。

(I)求橢圓C的離心率;

(II)若過A、B、三點的圓與直線相切,求橢圓C的方程;

(III)在(I)的條件下,過右焦點作斜率為k的直線與橢圓C交于M,N兩點,在x軸上是否存在點P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形?如果存在,求出m的取值范圍;如果不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),.

(1)當(dāng)處的切線與直線垂直時,方程有兩相異實數(shù)根,求的取值范圍;

(2)若冪函數(shù)的圖象關(guān)于軸對稱,求使不等式上恒成立的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項數(shù)列的前項和為,且滿足:

(1)求的通項公式;

(2)設(shè),求的前項和

(3)在(2)的條件下,對任意,都成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體中,如果把它的12條棱延伸為直線,6個面延展為平面,那么在這12條直線與6個平面中:

1)與直線不平行也不相交的直線有哪幾條?

2)與直線平行的平面有哪幾個?

3)與直線垂直的平面有哪幾個?

4)與平面平行的平面有哪幾個?

5)與平面垂直的平面有哪幾個?

查看答案和解析>>

同步練習(xí)冊答案