設(shè)ω>0,若f(x)=2sinωx在區(qū)間[0,
π
4
]上單調(diào)遞增,則ω的取值范圍是
 
考點(diǎn):正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)正弦函數(shù)的單調(diào)性和周期之間的想即可得到結(jié)論.
解答: 解:若函數(shù)f(x)=2sinωx(ω>0)在[0,
π
4
]上遞增,
∵過(guò)原點(diǎn)的函數(shù)f(x)的遞增區(qū)間為[-
T
4
,
T
4
],
則滿足
π
4
T
4

即T=
ω
≥π
,
則0<ω≤2,
故答案為:0<ω≤2.
點(diǎn)評(píng):本題主要考查三角函數(shù)的單調(diào)性,本題巧妙地運(yùn)用了正弦函數(shù)的單調(diào)性與周期之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=(x-2)(ax+b)為偶函數(shù),且在(0,+∞)單調(diào)遞增,則f(x)>0的解集為(  )
A、{x|x<0或x>4}
B、{x|-2<x<2}
C、{x|x>2或x<-2}
D、{x|0<x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z=1+2i(i為虛數(shù)單位),則z2-
5
z
等于( 。
A、4+6i
B、-4+6i
C、
20
3
+
2
3
i
D、-4+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x3+ax+4則“a>0”是“f(x)在R上單調(diào)遞增”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分,也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列雙曲線中,漸近線方程是y=±
3
2
x的是( 。
A、
x2
3
-
y2
2
=1
B、
x2
4
-
y2
9
=1
C、
y2
3
-
x2
2
=1
D、
y2
4
-
x2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2sin(x-
π
4
)最靠近坐標(biāo)原點(diǎn)的對(duì)稱中心為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某班級(jí)2014年元旦迎新有獎(jiǎng)活動(dòng)中有一節(jié)目,投擲一個(gè)各面分別有數(shù)字1,2,3,4,且質(zhì)地均勻的小正四面體,記其底面的數(shù)字為投擲的點(diǎn)數(shù),規(guī)定:參與者連續(xù)投擲三次,投出的點(diǎn)數(shù)全部一樣,或只含有1、3,或只含有2、4,則獲獎(jiǎng),如“4,4,4”,“1,1,3”,“2,2,4”等情形獲獎(jiǎng),每人僅限參與節(jié)目一次.
(1)求參與者甲獲獎(jiǎng)的概率;
(2)獲獎(jiǎng)一次得到獎(jiǎng)金10元,否則得到1元,求參與者甲、乙、丙三人總共獲得的獎(jiǎng)金ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)的一部分圖象如圖所示,(其中A>0,ω>0,|φ|<
π
2
).
(Ⅰ)求函數(shù)f(x)的解析式并求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,若f(A)=1,sinB=4sin(π-C),△ABC的面積為
3
,求邊長(zhǎng)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log
1
2
1-ax
x-1
的圖象關(guān)于原點(diǎn)對(duì)稱,其中a為常數(shù).
(1)求a的值;
(2)若當(dāng)x∈(1,+∞)時(shí),f(x)+log
1
2
(x-1)<m
恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案