6.已知a<0,-1<b<0,則有(  )
A.ab2<ab<aB.a<ab<ab2C.ab>b>ab2D.ab>ab2>a

分析 根據(jù)不等式的性質(zhì),逐一分析四個(gè)答案的真假,可得答案.

解答 解:∵a<0,-1<b<0,
∴0<b2<1,ab>0,
∴ab2>a,ab2<ab,ab>a,
∴ab>ab2>a,
故選:D

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了不等式的基本性質(zhì),難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知圓P過點(diǎn)A(1,0),B(4,0).
(1)若圓P還過點(diǎn)C(6,-2),求圓P的方程;
(2)若圓心P的縱坐標(biāo)為 2,求圓P的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列冪函數(shù)中過點(diǎn)(0,0),(1,1)的奇函數(shù)是( 。
A.$y={x^{\frac{1}{2}}}$B.y=x5C.y=x-3D.y=x${\;}^{-\frac{1}{3}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知F1、F2是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a>0,b>0)的左、右焦點(diǎn),過點(diǎn)F1且垂直于x軸的直線交雙曲線C于P、Q兩點(diǎn),若△F2PQ為正三角形,則雙曲線C的離心率e的值為(  )
A.$\sqrt{3}$B.2C.3D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=ax-a-x(a>0且a≠1)
(1)若f(1)<0,求a的取值范圍;
(2)若f(1)=$\frac{3}{2}$,g(x)=a2x+a-2x-2mf(x)且g(x)在[1,+∞)上的最小值為-2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.一船以22$\sqrt{6}$ km/h的速度向正北航行,在A處看燈塔S在船的北偏東45°,1小時(shí)30分后航行到B處,在B處看燈塔S在船的南偏東15°,則燈塔S與B之間的距離為( 。
A.66 kmB.96 kmC.132 kmD.33 km

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.給出下列命題:
①存在實(shí)數(shù)x,使$sinx+cosx=\frac{3}{2}$;
②若α,β是第一象限角,且α>β,則cosα<cosβ;
③函數(shù)y=sin2x的圖象向左平移$\frac{π}{4}$個(gè)單位,得到函數(shù)$y=sin(2x+\frac{π}{4})$的圖象;
④定義在R上的奇函數(shù)f(x)滿足f(x+2)=f(-x),當(dāng)0≤x≤1時(shí),f(x)=2x,
則f(2015)=-2.
其中正確命題是④(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若直線過點(diǎn)P(11,1)且在兩坐標(biāo)軸上的截距相等,則這樣的直線有( 。
A.1條B.2條C.3條D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=(1-cosx)sinx,則( 。
A.f(x)是奇函數(shù)B.f(x)是偶函數(shù)
C.f(x)既是奇函數(shù)也是偶函數(shù)D.f(x)既不是奇函數(shù)也不是偶函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案