分析 (1)推導出 EH∥BD,F(xiàn)G∥BD,從而EH∥FG,由此能證明EH∥平面BCD.
(2)推導出EF∥AC∥HG,EH∥BD∥FG,EF=HG=3,EH=FG=2,∠EFG=30°,由此能求出四邊形EFGH的面積.
解答 證明:(1)∵E,F(xiàn),G,H分別是空間四邊形ABCD四邊的中點.
∴EH∥BD,F(xiàn)G∥BD,
∴EH∥FG,
∵EH?平面BCD,F(xiàn)G?平面BCD,
∴EH∥平面BCD.
解:(2)∵E,F(xiàn),G,H分別是空間四邊形ABCD四邊的中點,
AC與BD成30°的角,且AC=6,BD=4,
∴EF∥AC∥HG,EH∥BD∥FG,
且EF=HG=$\frac{1}{2}AC$=3,EH=FG=$\frac{1}{2}$BD=2,
∴∠EFG=30°,
∴四邊形EFGH的面積=EF•FG•sin30°=3×2×sin30°=3.
點評 本題考查線面平行的證明,考查四邊形的面積的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學 來源: 題型:解答題
理科 | 文科 | |
男 | 14 | 10 |
女 | 6 | 20 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0戶 | B. | 34戶 | C. | 42戶 | D. | 358戶 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com