10.已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[0,3]上有最大值5和最小值1.設(shè)f(x)=$\frac{g(x)}{x}$.
(1)求a,b的值;
(2)若不等式f(x)-k≥0在x∈[1,4]上恒成立,求實(shí)數(shù)k的取值范圍.

分析 (1)求得f(x)的對(duì)稱(chēng)軸方程,可得f(x)在[0,1]遞減,在[1,3]上遞增,即可得到最值,解方程可得a,b的值;
(2)由題意可得在k≤f(x),xx∈[1,4]上恒成立,運(yùn)用基本不等式,可得右邊函數(shù)的最小值,即可得到k的范圍.

解答 解:(1)函數(shù)g(x)=ax2-2ax+1+b=a(x-1)2+b-a+1,
∵a>0,開(kāi)口向上,對(duì)稱(chēng)軸x=1,
∴f(x)在[0,1]遞減,在[1,3]上遞增,
∴f(x)min=f(1)=a-2a+1+b=1,f(x)max=f(3)=9a-6a+1+b=5,
∴a=b=1;
(2)∵f(x)=$\frac{g(x)}{x}$=$\frac{{x}^{2}-2x+2}{x}$=x+$\frac{2}{x}$-2≥2$\sqrt{x•\frac{2}{x}}$=2$\sqrt{2}$-2,當(dāng)且僅當(dāng)x=$\sqrt{2}$∈[1,4]時(shí)取等號(hào),
又不等式f(x)-k≥0在x∈[1,4]上恒成立,
∴k≤f(x),在x∈[1,4]上恒成立,
∴k≤2$\sqrt{2}$-2,
故k的取值范圍為(-∞,2$\sqrt{2}$-2].

點(diǎn)評(píng) 本題考查二次函數(shù)的最值的求法,注意討論對(duì)稱(chēng)軸和區(qū)間的關(guān)系,考查不等式恒成立問(wèn)題的解法,注意運(yùn)用參數(shù)分離和基本不等式的應(yīng)用,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.橢圓$\frac{{x}^{2}}{4}$+y2=1的兩個(gè)焦點(diǎn)為F1、F2,過(guò)F1作垂直于x軸的直線與橢圓相交,一個(gè)交點(diǎn)為P,則|$\overrightarrow{P{F}_{2}}$|=(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.$\frac{7}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知a=(-$\frac{1}{2}$)-1,b=2${\;}^{-\frac{1}{2}}$,c=($\frac{1}{2}$)${\;}^{-\frac{1}{2}}$,d=2-1,則此四數(shù)中最大的是( 。
A.aB.bC.cD.d

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若0<a<1,b>-1則函數(shù)y=ax+b的圖象必不經(jīng)過(guò)( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若函數(shù)f(x)=$\frac{{{x^2}-1}}{{{x^2}+2}}$在(-1,+∞)上的值域?yàn)閇$-\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.下列函數(shù):①f(x)=3|x|,②f(x)=x3,③f(x)=ln$\frac{1}{|x|}$,④f(x)=x${\;}^{\frac{4}{3}}}$,⑤f(x)=-x2+1中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞減函數(shù)為③⑤.(寫(xiě)出符合要求的所有函數(shù)的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列函數(shù)中既是偶函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞減的是(  )
A.y=x2B.$y={x^{\frac{1}{2}}}$C.y=x-1D.y=x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.圓(x-4)2+(y-1)2=5內(nèi)一點(diǎn)P(3,0),過(guò)P點(diǎn)弦的中點(diǎn)軌跡方程為(x-3.5)2+(y-0.5)2=0.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知拋物線y2=2px,過(guò)焦點(diǎn)且垂直x軸的弦長(zhǎng)為6,拋物線上的兩個(gè)動(dòng)點(diǎn)A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=4,線段AB的垂直平分線與x軸交于點(diǎn)C.
(1)求拋物線方程;
(2)試證線段AB的垂直平分線經(jīng)過(guò)定點(diǎn),并求此定點(diǎn);
(3)求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案