6.點(diǎn)P(m,n)在直線x+y-4=0上運(yùn)動,則m2+n2的最小值為( 。
A.$8\sqrt{2}$B.8C.$4\sqrt{2}$D.4

分析 點(diǎn)P(m,n)在直線x+y-4=0上運(yùn)動即m+n-4=0,所以m2+n2=(4-n)2+n2,轉(zhuǎn)換為求一元二次函數(shù)最值.

解答 解:點(diǎn)P(m,n)在直線x+y-4=0上運(yùn)動,
則m+n-4=0⇒m=4-n
∴m2+n2=(4-n)2+n2
令:h(n)=(4-n)2+n2,
故h(n)的最小值為:h(2)=8.
故選:B

點(diǎn)評 本題主要考查了點(diǎn)滿足曲線,一元二次函數(shù)最值,轉(zhuǎn)換思想,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=Acos(ωx+$\frac{π}{4}$)(A>0)在(0,$\frac{π}{8}$)上是減函數(shù),則ω的最大值為(  )
A.12B.$\frac{10}{3}$C.$\frac{8}{3}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}中,a1=3,通項(xiàng)an=2np+nq,(p,q為常數(shù)),且a1,a4,a5成等差數(shù)列,求:
(1)p和q的值;
(2)求該數(shù)列前n項(xiàng)的和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.計(jì)算[(2$\sqrt{2}$+3)2(2$\sqrt{2}$-3)2]${\;}^{\frac{1}{3}}}$+8${\;}^{\frac{2}{3}}}$-2log510-log50.25=( 。
A.4.B.3.C.2.D.1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,為保護(hù)河上古橋OA,規(guī)劃建一座新橋BC,同時設(shè)立一個圓形保護(hù)區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護(hù)區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端O和A到該圓上任意一點(diǎn)的距離均不少于80m.經(jīng)測量,點(diǎn)A位于點(diǎn)O正北方向60m處,點(diǎn)C位于點(diǎn)O正東方向170m處(OC為河岸),tan∠BCO=$\frac{4}{3}$.
(1)求新橋BC的長;
(2)當(dāng)OM多長時,圓形保護(hù)區(qū)的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖所示的三角形數(shù)陣叫“萊布尼茲調(diào)和三角形”,它們是由正整數(shù)的倒數(shù)組成的,第n行有n個數(shù)且兩端的數(shù)均為$\frac{1}{n}$(n≥2),每個數(shù)是它下一行左右相鄰兩數(shù)的和,如$\frac{1}{1}$=$\frac{1}{2}$+$\frac{1}{2}$,$\frac{1}{2}$=$\frac{1}{3}$+$\frac{1}{6}$,$\frac{1}{3}$=$\frac{1}{4}$+$\frac{1}{12}$…,則第10行第3個數(shù)(從左往右數(shù))為(  )
A.$\frac{1}{360}$B.$\frac{1}{490}$C.$\frac{1}{504}$D.$\frac{1}{840}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)z=log2(1+m)+i log${\;}_{\frac{1}{2}}$(3-m) (m∈R).
(1)若z是虛數(shù),求m的取值范圍;
(2)若z所對應(yīng)的點(diǎn)在第三象限時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.參數(shù)方程$\left\{{\begin{array}{l}{x=1-2cosθ}\\{y=2sinθ}\end{array}}$(θ為參數(shù))表示的曲線是( 。
A.一條直線B.兩條直線C.一條射線D.

查看答案和解析>>

同步練習(xí)冊答案