精英家教網 > 高中數學 > 題目詳情
5.在平面直角坐標系xOy中,設鈍角α的終邊與圓O:x2+y2=4交于點P(x1,y1),點P沿圓順時針移動$\frac{2π}{3}$個單位弧長后到達點Q(x2,y2),則y1+y2的取值范圍是(3,2$\sqrt{3}$]; 若x2=$\frac{1}{2}$,則x1=$\frac{1-3\sqrt{5}}{4}$.

分析 根據三角函數的定義求出函數y1+y2,再根據兩角和與差的余弦公式,二倍角公式,化簡,根據余弦函數的性質即可求出.

解答 解:圓的半徑r=2,點P沿圓順時針移動$\frac{2π}{3}$個單位弧長后到達點Q,
則移動的弧度為$\frac{\frac{2π}{3}}{2}$=$\frac{π}{3}$,
由三角函數定義知,x1=2cosα,y1=2sinα,$\frac{π}{2}$<α<π,
x2=2cos(α-$\frac{π}{3}$),
y2=2sin(α-$\frac{π}{3}$),
則y1+y2=2sinα+2sin(α-$\frac{π}{3}$)=2sinα+2(sinαcos$\frac{π}{3}$-cosαsin$\frac{π}{3}$)
=2sinα+sinα-$\sqrt{3}$cosα
=3sinα-$\sqrt{3}$cosα
=2$\sqrt{3}$($\frac{\sqrt{3}}{2}$sinα-$\frac{1}{2}$cosα)
=2$\sqrt{3}$sin(α-$\frac{π}{6}$),
∵$\frac{π}{2}$<α<π,
∴$\frac{π}{3}$<α-$\frac{π}{6}$<$\frac{5π}{6}$,
∴$\frac{\sqrt{3}}{2}$<sin(α-$\frac{π}{6}$)≤1,
3<2$\sqrt{3}$sin(α-$\frac{π}{6}$)≤2$\sqrt{3}$,
即y1+y2的取值范圍是(3,2$\sqrt{3}$],
∵x2=2cos(α-$\frac{π}{3}$)=$\frac{1}{2}$,
∴cos(α-$\frac{π}{3}$)=$\frac{1}{4}$,
∵$\frac{π}{2}$<α<π,
∴$\frac{π}{6}$<α-$\frac{π}{3}$<$\frac{2π}{3}$,
∵cos(α-$\frac{π}{3}$)=$\frac{1}{4}$>0,
∴$\frac{π}{6}$<α-$\frac{π}{3}$<$\frac{π}{2}$,
則sin(α-$\frac{π}{3}$)=$\sqrt{1-(\frac{1}{4})^{2}}$=$\sqrt{\frac{15}{16}}$=$\frac{\sqrt{15}}{4}$,
則x1=2cosα=2cos(α-$\frac{π}{3}$+$\frac{π}{3}$)=2[cos(α-$\frac{π}{3}$)cos$\frac{π}{3}$-sin(α-$\frac{π}{3}$)sin$\frac{π}{3}$]
=2($\frac{1}{2}×$$\frac{1}{4}$-$\frac{\sqrt{15}}{4}$×$\frac{\sqrt{3}}{2}$)=$\frac{1-3\sqrt{5}}{4}$,
故答案為:(3,2$\sqrt{3}$],$\frac{1-3\sqrt{5}}{4}$

點評 本題主要考查三角函數的定義,兩角和與差的余弦公式,余弦函數的性質,考查學生的運算能力.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

15.設函數f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<$\frac{π}{2}$)的最高點D的坐標為($\frac{π}{8}$,2),由最高點D運動到相鄰最低點時,函數圖形與x軸的交點的坐標為($\frac{3π}{8}$,0);
(1)求函數f(x)的解析式.
(2)當x∈[-$\frac{π}{4}$,$\frac{π}{4}$]時,求函數f(x)的最大值和最小值以及分別取得最大值和最小值時相應的自變量x的值.
(3)若f(α)=$\frac{8}{5}$,α∈(0,$\frac{π}{8}$),求sin2α.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.若角α的終邊過點(2sin30°,2cos30°),則sinα的值等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.在平面直角坐標系xOy中,橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,直線y=x被橢圓C截得的線段長為$\frac{{8\sqrt{3}}}{3}$.
( I)求橢圓C的方程.
(Ⅱ)直線l是圓O:x2+y2=r2的任意一條切線,l與橢圓C交于A、B兩點,若以AB為直徑的圓恒過原點,求圓O的方程,并求出|AB|的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.德國著名數學家狄利克雷在數學領域成就顯著,以其名命名的函數f(x)=$\left\{\begin{array}{l}{1,x為有理數}\\{0,x為無理數}\end{array}\right.$被稱為狄利克雷函數,則關于函數f(x)有如下四個命題:
①f(f(x))=0;                  
②函數f(x)是偶函數;
③任取一個不為零的有理數T,f(x+T)=f(x)對任意的x∈R恒成立;
④存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中正確命題的序號有②③④.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.函數f(x)=sinx-cosx的值域為 (  )
A.[-$\sqrt{2}$,$\sqrt{2}$]B.($\sqrt{2}$,$\sqrt{2}$)C.[-$\sqrt{2}$,2)D.(-$\sqrt{2}$,2)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.設集合A={1,2,3},B={2,3,x},A∪B={1,2,3,4},則x=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.已知復數z1=2+i,z2=1-2i,z=$\frac{{z}_{1}}{{z}_{2}}$,則|z|=( 。
A.1B.2C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.已知點O是△ABC所在平面內一點,且點O不在△ABC三邊所在直線上,設點P滿足$\overrightarrow{OP}$=λ1$\overrightarrow{OA}$+λ2$\overrightarrow{OB}$+λ3$\overrightarrow{OC}$(其中λ1∈R,i=1,2,3),則下列敘述中正確的是( 。
①當λ1=1且λ23=0時,點P與點A重合
②當λ12=1且λ3=0時,點P在直線AB上
③當λ123=1且λ1>0(其中i=1,2,3)時,點P在△ABC內.
A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案