分析 (1)直線的方程為:y=kx+2,由題意可得:$\frac{|6k+2|}{\sqrt{1+{k}^{2}}}$≤2,解得k即可得出.
(2)假設(shè)存在常數(shù)k,使以AB為直徑的圓過(guò)⊙C的圓心C,則$\overrightarrow{CA}•\overrightarrow{CB}$=0,直線方程與圓的方程聯(lián)立,利用一元二次方程的根與系數(shù)的關(guān)系.
解答 解:(1)直線的方程為:y=kx+2,由題意可得:$\frac{|6k+2|}{\sqrt{1+{k}^{2}}}$≤2,解得$-\frac{3}{4}≤k≤0$.
(2)設(shè)A(x1,y1),B(x2,y2).
假設(shè)存在常數(shù)k,使以AB為直徑的圓過(guò)⊙C的圓心C,則$\overrightarrow{CA}•\overrightarrow{CB}$=(x1-6)(x2-6)+y1y2=(x1-6)(x2-6)+(kx1+2)(kx2+2)
=(k2+1)x1x2+(2k-6)(x1+x2)+40=0.
聯(lián)立$\left\{\begin{array}{l}{y=kx+2}\\{(x-6)^{2}+{y}^{2}=4}\end{array}\right.$,化為:(1+k2)x2+(4k-12)x+36=0.
∴x1+x2=$\frac{12-4k}{1+{k}^{2}}$,x1x2=$\frac{36}{1+{k}^{2}}$,
∴(k2+1)×$\frac{36}{1+{k}^{2}}$+(2k-6)$\frac{12-4k}{1+{k}^{2}}$+40=0.
化為8k2+12k+1=0.
解得k=$\frac{-3±\sqrt{7}}{4}$.
∵$-\frac{3}{4}≤k≤0$,∴k=$\frac{\sqrt{7}-3}{4}$.
存在常數(shù)k=$\frac{\sqrt{7}-3}{4}$,使以AB為直徑的圓過(guò)⊙C的圓心C.
點(diǎn)評(píng) 本題考查了直線與圓的位置關(guān)系、點(diǎn)到直線的距離公式、一元二次方程的根與系數(shù)的關(guān)系、向量垂直與數(shù)量積的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[{2-2\sqrt{2},2}]$ | B. | (-∞,2] | C. | $[{2-2\sqrt{2},2})$ | D. | $({2-2\sqrt{2},2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{{4\sqrt{5}}}{5}$ | C. | $\frac{{4\sqrt{10}}}{5}$ | D. | $\frac{{8\sqrt{10}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
患感冒 | 不患感冒 | 合計(jì) | |
活動(dòng)時(shí)間超過(guò)1小時(shí) | 20 | 40 | 60 |
活動(dòng)時(shí)間低于1小時(shí) | 30 | 10 | 40 |
合計(jì) | 50 | 50 | 100 |
P(K2≥k0) | 0.010 | 0.005 | 0.001 |
k0 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com