20.函數(shù)f(x)=lg(x+4)的定義域是(-4,+∞).

分析 根據(jù)函數(shù)成立的條件進(jìn)行求解即可.

解答 解:要使函數(shù)有意義,則x+4>0,即x>-4,
故函數(shù)的定義域?yàn)椋?4,+∞),
故答案為:(-4,+∞).

點(diǎn)評(píng) 本題主要考查函數(shù)的定義域的求解,要求熟練掌握常見(jiàn)函數(shù)成立的條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)a=cos$\frac{2π}{7}$,b=sin$\frac{5π}{7}$,c=tan$\frac{2π}{7}$,則a,b,c的大小關(guān)系為a<b<c(按由小至大順序排列).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1),過(guò)直線l:x=2上一點(diǎn)P作橢圓的切線,切點(diǎn)為A,當(dāng)P點(diǎn)在x軸上時(shí),切線PA的斜率為±$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),求△POA面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c.
(1)D是BC上的點(diǎn),AD平分∠BAC,△ABD是△ADC面積的2倍,AD=1,CD=$\frac{{\sqrt{2}}}{2}$,求b邊的值;
(2)若a+b+c=8,若sinCcos2$\frac{B}{2}$+sinBcos2$\frac{C}{2}$=2sinA,△ABC的面積S=$\frac{9}{2}$sinA,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知sinα=$\frac{3}{5}$,α是第二象限角,分別求sin2α、cos2α、tan2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若$\overrightarrow a$=(x,2),$\overrightarrow b$=(-3,5),且$\overrightarrow a$與$\overrightarrow b$的夾角為銳角,則實(shí)數(shù)x的取值范圍是( 。
A.(-∞,$\frac{10}{3}$)B.(-∞,$\frac{10}{3}$]C.($\frac{10}{3}$,+∞)D.(-∞,-$\frac{6}{5}$)∪(-$\frac{6}{5}$,$\frac{10}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.復(fù)數(shù)z=-3+i在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.若函數(shù)滿足f(x)=x,把此時(shí)的實(shí)數(shù)x稱為函數(shù)y=f(x)的不動(dòng)點(diǎn).
(1)若函數(shù)y=xm-3的一個(gè)不動(dòng)點(diǎn)是2,求m的值;
(2)若函數(shù)g(x)=x2+(a-4)x-3b是區(qū)間[b-a,b]上的偶函數(shù)
①求a、b的值,并求出這個(gè)函數(shù)的不動(dòng)點(diǎn);
②判斷函數(shù)F(x)=g(x+1)-g(x-1)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.若x∈(0,1),比較函數(shù)f(x)=x2,g(x)=x-2,h(x)=x${\;}^{\frac{1}{2}}$的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案